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PREFACE

This paper results from a voluntary evening course in trajectory estimation
at the IBM Real Time Computer Complex, Manned Spaceflight Center (RTCC,
MSC). It is written for programmers and navigators assigned to implement
the navigation system, but who may arrive without previous knowledge of the
subject. These people need to understand the applied system as soon as possible
without necessarily becoming experts in all the individual disciplines. The at-
tempt, therefore, is to include all necessary background material and provide
compact, simple instruction on how to formulate the trajectory estimation prob-
lem for solution by a digital computer. This brief treatment certainly is not a
substitute for formal study of trajectory estimation from texts in estimation
theory and astrodynamics.

A sufficient background for understanding the presented material is a B. S.
in mathematics, science, or engineering, including courses in differential equa-
tions, matrix algebra, and vector analysis. Some introduction to celestial
mechanics and probability theory is helpful but not necessary.

The approach is first to review some useful facts about matrices and vectors
and formulate partial derivatives, first-order Taylor series, Newton's method
of successive approximations, and quadratic forms all in matrix notation. Then
the estimation equations are derived from fundamentals without relying on any
previous background in probability., The derivation is simplified by assuming
that the dynamic model of the spacecraft trajectory is perfect. Later on, since
model errors are inevitable, methods are suggested for empirically tuning the
system to improve its performance,

Attention is focused on the derivation of the estimation equations; and many
associated problems of a complete, implemented system are not included. For
example, the manual does not explain numerical methods for integrating the
equations of motion or calculating the state transition matrix, Other problems
such as editing observations, calculating refraction and local vertical, and pro-
gramming for displays are not mentioned.

Most of the theory is contained in the first fifteen sections. Beyond that
is a collection of applications and ideas that may be interesting (or even useful).

I feel that 1 have only partially accomplished my purpose in writing this
manual. Hopefully, a future revision would have increased scope, clarity, and

simplicity. There are bound to be mistakes, and I would be grateful to anyone
who sends in corrections,
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INTRODUCTION TO TRAJECTORY ESTIMATION
FOR RTCC PROGRAMMERS

1. INTRODUCTION

The navigational problem considered by this paper is to determine where
the spacecraft is and where it is going. If a navigator had exact knowledge of
initial conditions and acting forces and a perfect solution to the equations of
motion, trajectory estimation would not be needed. Unfortunately this is not
the case. Measuring techniques used to determine initial conditions suffer
from hardware and environmental limitations. External forces due to gravity,
drag, thrusting, and venting are not known precisely. And integration techniques
are such that predictions tend to diverge from the truth after a time, due to trun-
cation and round-off errors and errors in the known forces. In view of these
limitations a navigator must have some statistical means of resolving measure-
ments into a best estimate of initial conditions, and he must do this at regular
intervals to re-estimate current conditions. This is just a fancy way of des-
cribing any navigator's traditional task of using measurements to determine a
fix and velocity vector.

Our problem, then, is to formulate a mathematical method of processing
radar and optical measurements to estimate the position and velocity of a
spacecraft. The spacecraft may be in either free flight (power off) or a powered
maneuver, as long as the equations of motion are known., For example, if the
spacecraft is in free flight and tracked in an earth-centercd inertial frame, the
equation of motion is

. " -lT -
1.1 - = -——3+g(r, r, t)
Ir |

where r and r are the position and velocity of the spacecraft, t is time, u is the
gravitational constant, and g is a function describing perturbations from the
Keplerian motion. For the purpose of this paper we .re not concerned with the

formula for T (1. 1) or its derivation, We only need to know that T is a function

of T, ¥, and t, where r and r are the trajectory parameters to be estimated.
For a powered maneuver we only need to know what additional trajectory param-

eters are used in the formula for T to describe the thrusting forces and changing
mass, The estimated trajectory parameters become the initial conditions for
integrating the equation of motion to predict new (a priori) values of the param-
eters at a future time.

" iy B A0
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The spacecraft may be observed from earth or from another spacecraft;
or the spacecraft itself may measure quantities related to other bodies. The
measurements are range, range-rate, and various angles, all of which can be
formulated from a knowledge of the geometry and dynamics. The actual measurec-
ments and times are transmitted to the memory of a digital computer where they
are available to the processor. The program solves a system of ¢quations (called
a filter) expressing the best estimates of the parameters w.s functinis of the mea-
surements. The computations for this are executed at the command of a con-
troller. The filter is said to be sequential (or stepwise, or recursive) because
it is used repeatedly while navigating,

The next several sections contain some fundamentals which should be under ~
stood before proceeding with the derivation of the filter. The advanced student
at his own option may omit those sections with which he is already familiar.
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2. MATRICES

A matrix is a rectangular array of elements with certain mathematical

properties. Most of the properties which are important to us are listed below. [1]
. , . . . .t

If Ais a matrix and ajj is \he eiement in the it" yow and Jt ' column, then

2.1 A=(a1J) (i=l,...,m),(j=l,...,n)

Addition
2.2 A+B:(aij+bij)
Subtraction

2.3 A-B3(31J~b13)

Multiplication (o a scalar)

2.4 G,A = AG, = (aaij)

Let
A=(a1j) g i=1,...,m
v j=l,...,n
B:(bjk) ’ k:]., .’p
Then

n
2.5 AB = <z; ajj bjk) = (cji) = C
J:

Also
2.6 (AB)C = A(BC) (associative)
2.7 AB # BA (not commutative unless A and B are both diagonal

matrices)
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Identity
SRR
2.9 Al =IA = A

Zero

A =¢-»everyaij=0and
2.10 AB=BA=¢ (B # @)

T ranspese
. . T
The transpose of A is written A",
2.11 A= = AT
. = (aij)«-»(a,ji) = 4
Symmetric
2.12 A= AT =
. = > aij = aji

Skew - symmetric

T
2.13 A=-A Haij =.-aji""aii=0

Inverse

2.14 B=AlesaB

n

BA=1
also

2.15 (ac)yt=clat

and

H69-0009-R
DATE 5/9/69
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Partitioning (an example)
Let
A =fa;), B =(b) (,j=1,...,n)
{m < n)
All = (a'lj) s Bll = (blj) (1:.] =1, :m)
A =14y A B=131 P
Az1 P2 Ba1 B
Then
2.17 A+B= A11+Bll A12+B12
421t Ba1 At By
2.18 AB = A11B11+A12B21 A11B12+A12B22
421811 T 422821 851812 T 4228,
‘ There are several ways of formulating the inverse of a partitioned symmetric
H matrix. The way su gested here can be proved easily. - [1]
¥
N Let
3 T T
% A =A -—»A12 A21
§! and
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Then
A a1t B B
11 12 _ 11 12
2.19 -
T T
A12 AZZ BlZ B22
where
-1 T7-1
4.20 By = [All B AlezzAlz]
T -1 -1
2.2 = -
1 B22 [AZZ A12A11A12]
2.22 B._=-B. A,_A-}
12 117127722
T T ,-1
2.23 = .
B12 B22A12A11

H69-0009-R
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3. VECTORS

A A A
Let 1, j, k be unit basis vectors in an orthogonal inertial frame. Then a
position vector may be expressed

A
1

- A A
3.1 r=ix+ jy+ kz

or equivalently

Since we are using matrix notation throughout, it is convenient to omit the
inertial basis vectors and express the vector as the ordered column of its com-
ponents. Then

3.3 T =[x , & column vector
Yy
z
and
-~T
3.4 r =[x, y, z] , a row vector.
Addition
. T T =[x ] N B .
3.5 r1 + rz xl X, :\:1 + x2

z1 Lzz“ Lzl + z2

Dot Broduct

- - ~T— _ I
3.6 I, =T, S [xl, Yy z1] X, =x X, tyy, t22,

Y, (a scalar)
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Cross product

Let

’—T — (3 » .
3.7 ro=[x, y, 2] ; 7 = [x, vy, 2]

Then by the definition of vector analysis

- A A A .

3.8 rxv=|1 j kle>yz-zy
X §y =z 2% - x%

X Vv z Xy - yX

With every 3-dimensional vector, T, there is associated a skew-symmetric

~o
matrix, r, as follows:

3.9 FT=|xlesx|] 0 -z y| =F [2]
y z 0 -x
Z -y x 0

Now the cross-product can be expressed

o~

3.10 TxVeasttv=| 0 -z vy|lk]|=]|yz -2y (2]
z 0 -x|]|vy zk - xz
-y x 0]}z Xy - yk

and the result of 3.10 is the same as 3.8.

The following equivalencies can all be proved easily using 3.6 and 3. 10. (2]
3.11 Fv= 57
3.12 FTx(FxV)e—r¥v
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3.14 (?r_x;)x;«—-»

3.15 ~\a;'“l-:xv<—‘>w rv

In this manner any combination of dot and cross products is equivalent to a
product of skew-symmetric matrices and vectors.

Rotating frames

Although we can omit the basis vectors of the inertial frame, it may be
necessary to express the basis vectors of a rotating frame. Let

T

3.16 Py

= [ ] be a vector expressed relative to a rotating frame,
Py P2 P3 P g

and
~T . . .
pI be the same vector expressed in the inertial frame.

AA A
Also let [e1 e, e3] be the unit basis vectors in the rotating frame. Each

A
e; can be expressed in the inertial frame, e.g.,

AT
3.17 e, = [elx ely elz]
and
3.18 [eé. e o.]-= =T
' [el 2 e3]‘ ©1x %2x S3x |°
ely e2y e3y
elz eZZ e3z
Then

- A A A T
3.19 Pr = [el e, e3] [pl Py p3]
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State vectors

Up to here we have been discussing vectors which can be plotted in Cartesian
3-space, but abstractly a vector can have many more elements than three. The
trajectory parameters to be estimated, for example, are expressed as an ordered
column of functionally independent basis elements, called the state vector, S.

X

3.21

n
u
G
]

[? :\ (by partitioning)

v

¥ N

<

| 2 |

(Note: For notational convenience later on the bar over S and certain
other vectors is omitted.)

The basis elements of S are chosen so that they are functionally indepen-
dent, e.g.,

él: —a—-}-{-:
3% 0, 35 0, etc.

This choice results in more convenient formulations. If there are more
trajectory parameters to be estimated, then the corresponding basis elements
are adjoined to S, and the dimension of S is increased accordingly.

Observation vectors

Each element of the computed observation vector is a function of the basis
elements of S, i.e., the trajecitory parameters. Consider the vector mn-ieling
three measurements at time t;:

T
3.22 By =[Bi1 Bi2 Bizl
Here each Bjj is a scalar function of the trajectory parameters, i.e.,

3.23 g = 8(S5) (Si = St;)
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Magnitude of a vector (example)

3.24 1‘=l?|={'i‘—? =Jx2+y2+zz

3.25

3.26

3.27

where

T lx y 2]

Unit vector (examples)

Ao I X
I
if
e=rv
then
Ty
e = End
rv
Dyadic (example)
T 2
rr =}l x| [xy z2)l=|x xy xz
2
Yy Xy vy yez
2
zZ Xz yZ zZ

H69-0009-R
DATE 5/9/69
PAGE 11

Note that the determinant of 3.27 is zero, and the matrix has no inverse.

Quadratic form

Let A be an n xn symmetric matrix of constants and u be an n x 1 vector

of variable elements.

3.28

Q= T AT )

Then the scalar function of elements of U,
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is a quadratic form. If ¢ > 0 for all u, then both ¢ and A are said to be posi-

tive definite. If ¢p = 0 for all u, then both ¢ and A are said to be positive semi-

definite.
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4,1 A=1[]3 -3 1]|; B=|2 0 6; C=]2 -3
0 1 2 4 -1 5 1 1
2 -4 4 1 1 3 0 2
a =2
Compute:
(a) A+B (g) A(BC)
(b) A-B (h) (AB)C
(c) aA (i) Al
(d) Ba G) IA
(e) AB T
() BA (k) A
4.2 (a) Give an example of a symmetric matrix.

(b)
Let

4.3 A

Then

11 -

11

Introduction to Trajectory Estimation
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4. PROBLEMS

Give an example of a skew-symmetric matrix.

A11 A).2 , B= | B B

Ayl Ao B,1 Bz

1

H69-0009-R
DATE 5/9/69

PAGE 13

= [ = [ = - =
3 -3, A, = 1] L Ay = (2, 4], A, = (4]
0 1. 2

=z o].B,=[6].B, =01 11,8,
(4 -1 5

Compute AB using this partition and compare the result with 4. le.

4.4 T=

3l,v=|1],0=]| 4 1 .3
| 5 1 2 0
2 -3 -3 0 3
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A A A
Compute (without using i, j, k):

(a) T° () or
T Y
(b) rr (g) T Qr
) || == (h) TV
() * Q) Fxv)xT
(e) -;TQ i) |S| , wWhere ST = [
If
?T =[x y z]
and
Q-l = az 0 0
0 b2 0
0 0 c:2

Give an interpretation of the equation

LT =1,

H69-0009-R
DATE  5/9/69
PAGE 14
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5. PARTIAL DERIVATIVES

This section shows some convenient methods of differentiating scalars and
vectors which are expressed as functions of vectors and matrices. The rules
are simple and often will be demonstrated by an example rather than defined.

Let
5.1 ¢ = a scalar
5.2 ST = [?T, V'I

5.3 TL=[x y, 2]

5.4 V=& ¥ 2)

Derivative of a scalar

Clearly

T
=9

By Jefinition the derivative of ¢ with respect to several variables is a row
vector, e.g.,

5 5 ése_[é_ce 20 _a.ss.]

3T | d3x ' dy’ dz

T
Then 9_92 is a column, and by definition
dT Y

T T
5.6 (Q_cg) = L

T dr

Derivative of a vector

The partial derivative of a vector with respect to several variables is a
matrix. Let

_T
Fo = [*0* Yor 20]
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and
T=T7 (ro)
Then
dT l-ax dx axT
> 1 T - ox d %z
0 o Yo °%
oy  dy 9y
axo ayo azo
92 Oz dz
Laxo ayo azo
Another example:
w=|u
v
where
u = u(x,vy,z)
v = v(x,y,2)
% Then
: 5.5 ¥ o[ u
” ' dT dx Jdy 3z
i dx dy 23z

Derivative of a matrix

The partial derivative of a matrix with respect to one variable is a matrix.

5.9 A=[a.. a,  J—24_.[323, 2,
11 12 dx —
ox dx
a a
21 22 ba.21 aazz

dx dx
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The derivative of a matrix with respect to several variablec can be expressed
ire teasor notation. We are able to avoid this type of derivative and use matrix
notation throughout.

Derivative of the dot product

The dot product is a scalar; so the derivative is a row vecior. (5.5) Let
u, vV, W be three vectors. Recall

T T
u v=v u.

Then

T ~T . — T
5,10 2L vl _uwov , v
) AW - dW W
It follows that

2@ ) _ 2 o4

5. 1 oW W

Anoth.er example: (5.2, 5.3, 5.4)

- T — T —
3ET) _Tav +voer
3s 3S dS

'i-‘Tw, 1] +'v'T[I, @]

. v
v , T

Here we took advantage of partitioning, i.e.,

H

5.12

B E-E- i
= [a'f’ BV] (I, 8], etc.

Derivative of a quadratic form

o»loz
o |

The quadratic form is a scalar; so the derivative is a row vector,

I AR ¥ it W
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Let 0 be a symmetric matrix of constants, and

cpEVTQiT:TiTQ??
Then
T _— _T_ __
5,13 2.V 028, w09V

0S5 oS 3S

Let Q be (6 x6) and o = STQS, then

T
-:-g = 28 Qg_g = 28Ta1=28"q

Or let Q be (3 x3) and @ = 'fTQ'r", then

T . —
09 . 2r aor _ 2T
S 55 -~ 2% alL 0]

Derivative of the product of a scalar and vector

Note that the product is commutative.
Pu = up
Then

D) _ 93T , Wy
>- 14 =5 35 T3S

Another example:

A
Find 28
3S
A — — —-—
:s 38 |.== _T_ 23S as |.[CT—
VP p PP PP
T -

" GRS Sl s

RS S
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a“ AT 1 3p
5,15 ££ = [1 - ] 9P
oS PP 38

And taking the transpose of 5.15

5.16 2p" _ 1 8ET[ “T]
) dS |p] 38

Derivative of the cross product

Recall T x V«s>T Vv = -vT (3.11)
Then
3G7) Tov Yor _~ ~ ~
1 = —_— . = - = [-
5.17 35 3 3S I'[_¢, I] V[I; ¢] [V: 1‘]
Derivative of w x (¥ x V)H%mr;
NIV = WANT = (v - VB )W (3.11 - 14)
Then
s g 2T _wrav  SNaT  ¥Vow | VFaw
23S F) S ) d
Let w =T, then
JWEY) _ TEIV TVIT |  mm Ao BT
= ov _ or + i -N or
35 35 55 T [VE-Tvlsg
= F¥[0, 1] -F5([1, 0]+ (W% -F5]11, 0]
5,19 ALTV) - [9¥ . 2%, 7

H69-0009-R
DATE  5/9/69

PAGE 19

O KNI 35, it Hob



*

2

a4
.

O
Sl Introduction to Trajectory Estimation H69-0009-R
I
o DATE 5/9/69
) IBM RTDC Mathematical Report
% PAGE 20
Derivative of W *¥%
W YV=-W VI = -V I'W
Ll — —_—lry — ~Tx - _Tan —
5 20 B(wTrv wTrQ\_/ _ W vor V raw
' S dS S o)

The gradient of a scalar

From vector analysis

EY T
5.21 ch='i‘-g% +'§§59+ ﬁ%ﬁ-«» % =g%

o1

oy

o

The gradient of a vector

From vector analysis

AV | MV

- v Adv
yv = lax + Jay + kaz
) A(,}av X ov , ﬁavz i.}\‘Eav +9bv 1ﬁav f{havx +Aav +f<avz>
=P \'ex T3 ax ) ISy Yy Sy 3z T3 3z
ov. av_oav | [, _T
- A A A X vy A av
5.22 wv=li] k] dx dx dx o DY
dv. Ov  dv
X y z A
oy 9y oy .
dv. dv_  dv A
Y k
_az 92 az_ ]
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The gradient operator of matrix calculus

Some authors use this notation. We explain its use, but we shall not use it

further. Let SET = [xl, %X - xn] . Then

2

li]

5.23 V= 5%

and

m
E

Vv
X

po—

v = —

[3,4]

AN TR s 5s v
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and
— — w
T 3 V-~

5.24 vyv = 3% [vg vy v, ] *3F

N

oy

=N

=T . . - .
Note that vv of 5.24 is equivalent to the vV of 5.22. By either of the above
definitions the gradient is equivalent to a rartial derivative, and from now on we
shall use the partial derivative notation.

Chain rule (example)

AR o R

. W,

e

=g gx,

Musmtens.

25 I OT
Let
rT=[x]|, u= u | w = W,
v Y2 Y2
[3x 3x | [ou; duj] [ex ax ]
aul auz awl awz _ awl' aw2
dy 3y auz Buz oy oy
Bul auz_ L_awl awé _awl aw?=J
since, e.g.,
ax_ _ax %1 ax %2
ow,  du, aw1 ou, ow,
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Summary of rules for differentiation

Then from 5.25 it follows that

(2)

(b)

(c)

(d)

(e)

(£)

(g)

(n)

%SQ is a row vector.

ﬁ is a matrix

35 :

o(z’v) T av . e
dW dW W

2le8) _ 93T , Top

3% 5w T 3w

o(eaw) _ v"nzm , wa’aw
> X Yo

{(and Q = QT if symmetric)

Tr~a

H69-0009-R

DATE 5/9/69

PAGE 23

For expressions such as ¥ uvw etc., find equal expressions so that
each element of the expression is permuted to a vector on the right.
Take the sum of these with each right-hand element differentiated.

dfou) _od
dt\25) 35

If A and B are matrices, then

d _ . .
5 (AB) = AB + AB
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5.27 Problems

Define
s=|F|, T=x]|, V=] %
v y y
z

T=R-T

5=V-¥

R and V are functionally independent of S,

p—

LV

R |is the vector of trajectory parameters of the LM.

is the vector of trajectory parameters of the CSM.

-

v

Then

p = J'ETE is a range measurement from the CSM —> LM, and g—te

AT
is a range-rate measurement, where -gf— = pT'ﬁ' .
3 olom _ [ AT
s e [4n)
(a) Find 35 ans, { 35 p ., 0
(b) Show that %E— = ST';'J"
3 AT;.) STQ_E HTQS_
(c¢) Find -—-Q-—Las = 3S + 35

H69-0009-R

5/9/69

24
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AT Y Toy Te
(d) Find o -2 PP 1 é_(p p)+p po / 1
358 3S ‘[_’I‘_ _T_ 35 S| /=T
PP (S PP

(e) Find -a—(‘—iﬂ> - 4

35S \dt dt | 3S

1
|
| oeuren
[e7]
Gl

Hint: Use the results of part (a) to solve for gas- (%E)

Parts (c), (d), and (e) all have the same answer (of course) as follows:

)
T [AAT AT
[p—(pp -I), -p ]
p
In parts (f), (g), and (h) let
TxV A FxvV)xT

y €95 T T — pty
T x 7 2 I(rxv)xr|

A
Jde

1
(f) Show that 35

A
e

l—r,e3—

-117[1 88T 0

<

i 3 1 [, aaT
(g) 35 o -I - e3e3] [_

o
o
[¢]
(A8
1

1]

(») 3

)
N|"‘

¢
Z
¢
*

In parts (i) through (n) let

20 = (S - S)Tl'"l(g - 8)
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~

-1, . .
where S is a constant vector and I’ = is a symmetric matrix of constants (6 x 6)
and partitioned as

rol - 1 Y12
where each Gijjis (3 x 3).
T
G12 GZZ
Show that

No09 o w oI .
() 35 = -(8-9 Fo“T

<R>
o>

A
A A ~
Note that r x ve—»r1r

w
¢

A
v
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Show that

A
A A a~
Arxv) X (1. T
(o) 35 = |- I-rr),

< |2 >

(, AAT
L-vwvv

Hint: Use the proved formula

au 1[ MT] T
—z = — |I-uu

d3S T u 3s

What are the dimensions of the matrix answer?

T AT AT
o 20T ¥ () £ ()]

What are the dimensions of the matrix answer ?

H69-0009-R
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6. TAYLOR SERIES

Coraplete discussions of the Taylor series can be found in almost any text

ou advanced calculus. The only purpose here is to show how to express the

first-order Taylor series in matrix form.,

One dependent and two independent variables

In Section 3 the superscript carat was used to denote a unit vector. In this
section it is used to denote A close estimate of a scalar or vector, as follows.

Let y be a scalar function of two scalar variables
y = ylx), x,)

A A
and let x, and X, be close approximations of X, and x, so that a linear approxi-

A
mation, y, of y is valid:

A _ A A
y = Y(xl' xz)

A
Then a first-order expansion of y about y is

" A A A
6.1 y=vy+ 3%, \¥1 " ¥ + S (xz xz)
’ 1 2
’ Define
~ A A
X = X, s X = X
A
x2 x2

Then 6.1 can be written

L5]
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Three dependent and three independent variables
Let
y; = yi(xl, Xy s x3) i=1, , 3)
A _ A A A
Vi © Vl(xl’ *2 xs)
A
Vi - Y is small enough to allow linear approximations. Then
6.3 ;. = +ayi . +ayiA +aYiA
‘ YiTYiT 3x (Xl ) Xl) % (xz i Xz) % (X3 ) X3)
1 2 3
Define
Y = yﬂ , X = X
Y2 *2
Then 6.3 can be written
_ Y
6.4 Y-Y+BX(X-X)
n dependent and n independent variables
ij yi=yi(x1, XZ""’xn) i=1,...,n)
b ) A A A
E Vi T Vi("l’ vk ’xn>

6.5 g o=yt = (%, ~x)+... + —(x

|
|
|

eA—— o5 et o 15
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Define

Y:h—yl_l ,X=_x_

Lyn.J an_

This extension to n variables is apparent without a formal proof. The
saving in notation is obvious when 6.6 is compared to 6.5. Another necessary
assumption is that the functions are continuous in the region of the expansion

dY .
and that 3% exists.

e S T R




P A PP

o, v

§ Introduction to Trajectory Estimation HA9-0009-R
o DATE  5/9/69
0 IBM RTOCLC Mathematical Report

% PAGE 31

7. NEWTON'S METHOD

Newton's method of successive linear approximations can be used to get
the solution to n non-linear equations in n unknowns. There is a lot of theory
written about this method, particularly in connection with convergence pro-
perties [13]. Although this is a very worthwhile subject to study, for our

purpose it is sufficient just to demonstrate the method and comment on the
convergence criteria.

One equation and one unknown

Let y be some non-linear function of x.

7.1y =yx)

A
and there exists some value, x, of x such that

A
Then find x.

~ . . A A ~ .
Let x be a close approximation of x such that x - x is small and linear

. A . . .
approximations are valid. Express y as a first-order Taylor series expansion

(6.1).

~ Ao~ ~ ~,
7.3 )Ar=y+§-z(x-x):0 where y = y(x)
ax and iz—,=?‘=y‘(§)
dx
Then
-1
A~ d ~
7.4 x=% -~ y
dx

Equation 7.4 can be re-written for iteration, where subscript, n, indicates

the nth iteration.
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If convergence criteria are satisfied after n iterations, we consider that

A
X =X
n

The manner of convergence

by this succession of linear approximations is
illustrated in Figvre 7. 1.

Figure 7.1

n equations and n unknowns

To illustrate this we shall solve a problem which will confront us later on.

Consider the following system of n non-linear equations in n unknowns.
A
7.6 §(S)=19
Find §.
A A
By our notation §(S) = §, and S is an n-element state vector.

7.7 ST=[x1,...,x]

n
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7.8 ¢ = §(5)

or equivalently

o] o ox)
7.9 . =1
_Qn__ _Qn(xl’ ’Xn)_d

~

Let S be a close first approximation of S such that S - S is small and

>

linear approximations are valid. Then an approximation of ¢ is

710 3=5+2¢-5 -9 (6. 6)

dS

where 3 = §(5)

A
Solving for S

-1
711 §=8-(2%) %
ds

Assume that 28 is non-singular,

~

3S

Since 5 is a closer approximation to the solution than S in 7.11, we can
rewrite 7. 11 for iteration.

-1
_ o8
7.12 Sn+1 - Sn h (aSn) Qn (

If convergence occurs after n iterations, consider that

§-s

n

Introduction to Trajectory Estimation H69-0009-R
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A theory exists [13] which shows that Newton's method will converge under
certain conditions, but it is difficult and time consuming to determine if these
conditions are met. For our purpose it is sufficient to assume that the condi-
tions are satisfied, and the method will converge. Computer programming will
stop the process in occasional cases of non-convergence.
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8. PROBLEMS

If a, b, ¢, d are scalars, show that

-1
a b _——_1 d -b
C d " ad - be |~c a

Consider the system of equations

2
y=x

y =X

Using initial conditions as given below, perform the first iteration toward a
soluticu by Newton's method, i.e.,, find Sl'

Rint:
S =[x
n n
[ 2
Qn 1% " Va
*n " Yn
a8 \ !
Sl = SO - (S-g— ‘I>o (7.12)
0/

(b) S'g = % y 1 $ In each case find Sl' What do you conclude from

the results?
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9. FURTHER PROPERTIES OF SYMMETRIC MATRICES
Some properties of positive definite and semi-definite matrices are dis-
cussed. The proofs of the statements are not difficult and they are available
in standard tests. L1
Liet
X be a vector (n x 1)
' a symmetric matrix (n x n)
@ = }—cTI‘i
Then if ¢ > 0 for all X # 0, I’ is said to be positive definite, written
9.1 T>¢
If 20 for all X # 0, I’ is said to be positive semi-definite, written
9.2 T =290
Then
9.3 T'>0 —>T=29¢
Also it is true that
9.4 T >¢—|T|>0

and

9.5 I‘>(I)-—->I‘-l exists,

Let )\; be an eigenvalue of T'.

9.6 I‘>¢-—>)\i>0
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9.7 Pz¢_>xizo

Also

9.7A 1“>¢<_>r‘1

Let

>0

A be (n x p) of rank r, and

Q>0 (n x n) and symmetric.

Then the following are true:

9.8 ATA =2 ¢
9.9 ATaz¢
9.10 ATA>¢
9,11 ATQA2¢

9. 12 ATQA >0

9.13 ATQA >0

All of these (9.8 - 13) are symmetric.

(n < p)

(r <p =n)

(r =p <n)

(n < p)

(r<p <n)

(r =p <n)

H69-00090R
DATE 5/9/69
PAGE 37

Equation 3.27 is an example of 9. 8.

-1
In derivations which follow it is necessary to compute forms such as (ATQA)

and also to be assured that ATQA > @. Line 9.13 shows that the necessary and
sufficient condition is (r = p < n).

9.14 Problem
Let

A=|1l1 2
2 1
1 2

P,
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Q = 1 "1 0 ’ F = 1 ‘1
-1 2 -1 -1 2
o -1 2
(a) Compute |qf , ll"l , |B|.
(b) From the answers to (a) comment on the existence of Qul, T B-l.
T -1
(c) Compute [AI‘A ] if it exists. Classify it according to 9.11, 9. 12,
or 9.13.
T -1
(d) Compute [BI‘B ] if it exists. Classify as in (c).
T -1
(e) Compute [_A QA] if it exists, Classify as in (c).
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10, MINIMIZATION OF A QUADRATIC FORM
AND SOLUTION BY NEWTON'S METHOD

This method will be used later on in deriving the Bayes filter.

Let
T
10,1 87 =[xy %peeen %]
T
10.2 a” =lap ayeeesa ]
10.3 a =a(S) , i.6.,
10.4 q. =aqa, (x,, x X )

i i1 2’
10.5 R > ¢ and a symmetric matrix of constants (n x n).

Then from 10.5 it follows that

10.6 R.1 > ¢ and symmetric.
Consider the quadratic form,

10.7 2 = aTR-la,

where

10.8 o = ¢(S).
Find g, the value of S such that the scalar ¢ is a minimum,
10.9 o . =)

We use the classical method.
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Let 5, be the solution of g—;‘? =@ . Then ®(S)) is an extremum. If in

2
addition 22 > ¢, then 9(S,) is a minimum and S, = 5.

BSZ
T
29 _ 2 p-l
10.10 % = 35 55 R
10. L1 % = §(S)
and

[}

10.12 8 =3(8) =9

The solution to 10,12 will render ¢ an extremum. Disregard second order
partials in taking the second derivative:

T
3% _da p-ldoa
1 . —— — —t R —
V- 13 38 d aS

w1
assuring that the extreinum is a minimum and (S-g) existis,

Assume that 10.12 is a system of non-linear equations and S is a close first

A
approximation to the solution, S . Then by 7.11

-1
10. 14 é:%‘-(éi) 3

3S

R

)
¥
s

i R S
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or iteratively as in 7.12

-1

T T
da. -1 3a da -1
. =S -
10.16 Sn+l n 35S R dS oS R %
n n n

H69-0009-R
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11. THE STATE TRANSITION MATRIX
Let S;r = [xi’ Vi 2 5{1, i’i’ éi] be the true value of the state vector at
time ¢t,.
i
N D L . T ~
Let S, = [x., Vir Z.y Xy V. z.] be a close estimate of S such that (S - S),
i RS RS A LS S i i

is small and linear approximations are valid. It is also true that the state vector
at time tj is a function of the state vector at time ti , written

11.1 S ,=8.(5.)
J J 1

Then using a first-order Taylor series expansion as in 6.6

1.2 5 =5+ %, S, -s,)
or
dS

~ —_j‘ ~-
11.3 (s-s_mj-asi(s s),

3S,

J

The derivative, -5-§~ , is the transformation matrix which relates a small

deviation in the state vector at time tj to a small deviation in the state vector
at time ti' This is called the state transition matrix. In expanded notation, the

state transition matrix relating the deviation vecior at time t to time tO 1s written
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dx dx dx ox ox Ox
ox ayo oz ox ayo azo

9y, azo 83{0 ayo Bio

3z oz dz dz 9z oz
3S dAx aYO 0z axo ayo azo

0 d%k 3% dk%k dx 3%k 3
axo Byo 9z, 0x byo oz

dV  dy  dy  dy  dy 3y
axo oV azo o0x byo oz

3z D% Dz dz dzZ dz
BXO BYO BZO axo ayo bzo

This idea is readily extended to state vectors of any dimension.
11.5 Problem (A)
Given:
(a) An x-y cartesian frame

(b) Radar station at (0, 0)

(c) State vector =S = [x
y

(d) A priori estimate of the
location of an object is

~ ~

S=|x

371
o L)

PR
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(e) o = [ ¢} jl is the true angle and range of the object, i.e., o = a(S)

p

(f) 0 = 500] a radar observation
| 3

(g) o = —400] another radar measurement
| 4

(h) &= al®
Find:
(2) A better estimate of S.
Solution:
We shall do this by the method of least squares, i.e , we shall find the

value of S which minimizes the sum of the squares of the residuals.
Residuals are (ei - §) and (pi - p). Do one iteration only of Newton's

method with S as the first estimate. The sum of squares of residuals
is written as a quadratic form:

20 = [(al - oc)T, (on2 - on)T] o) -a

&2‘0.

@, - oy -+ o, = a) fay - a)

BCPT BOLT
& =35 ~ 3% [(ml -on)+(on2 - a)]

AN
1]
&

(o7 TeY)

A

o/
wn
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Then
A ~ a@ ~l~
S=5-{— ® (10. 14)
oS
-1
T T
A ~J
S=5+ 29%9% é% [5a1+6a2]
3S 23S 39S
-1
A feYe .
ssume that <—-—:) exists, then
dS

-1/6a. + 8¢
A ~
4.3, (2 (___1_2.__2)
95

A A~
Now go ahead and compute the first iteration, i.e., compute S = S(S) where

"]

Problem (B)

%

Do the second iteration.

L emeatn B T TR
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12. STATISTICAL THEORY

This section is prepared for those who need to understand trajectory esti-
mation but lack a foundation in statistical theory. Such a scant treatment as
this is only a shortcut to understanding the main subject and certainly not a
substitute for formal study. For the previously uninitiated, statistical theory
provides a new realm for mathematical ireagination, where ideas may be beau-
iiful and apparently simple, yet elusive. The student, however, should not be
deluded by this apparent simplicity into dismissing the subject lightly as trivial.
Tenacious pondering of the new notions must lead to feelings of frustration and
inadequacy, fcllowed by awareness and respect, and eventually appreciation and
even astonishment — if he gets the right answer!

First consider a simple problem. Suppose we have three urns, each con-
taining an infinice number of balls of different colors, assorted as follows:

I II It
.1 blue .2 red .1 wviolet
.2 red %  vyellow .3 pink
.3 yellow .5 blue .5 red
.4 green .1 black

Let the first letter of the color denote the color, i.e., B <«— blue, etc.

In each of the following selections one ball will be chosen at random from
urn I, urn II, and urn IIl in that order.

P is the probability of making a selection.
Then

P(R, B, P) = (.2)(.6)(.3) = .036

PR, R, R) = (.2)(.2)(.5) = .02

P(G, Y, V)= (.4).2)(.1) =.008

- o
AR

fuc -

o
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To generalize this idea consider a set of p urns, Ui’ each containing an
infinite number of named elements. One random sample, Oy s is taken from

each Ui' And n, is the decimal part of Ui which is named a, - Then we have

{u.} (i=1,...,p)
a. € U,
1 1

12.1 P(o(,l,...,onp):nl---np

Suppose each ni is a function of a set of parameters, S, and we took the

sample {ai} in order to find the most pr. bable value of S.
= S

A
Then we would try to find the solution, S, which would maximize
P(a,l, ces a,p). This is the elementary principal which we use in processing

radar measurements to get a better estimate of the state vector of a spacecraft.

So now we are just beginning to consider the problem of using radar mea-
surements to get a better estimate of trajectory parameters. Let each measure-
ment be modeled as a scalar function of the state vector. Later this will be
extended to include vector functions, where several scalar measurements
can be the elements of a measurement vector, Each measurement can be
thought of as a random sample from an urn, one measurement only from
each urn. In the example above we listed the assortment of colored balls in
each urn. Analogous to this we need a way of listing the assortment of radar
measurement values in each '"urn', The assumption bere is that the normal
density function as shown below is a valid representation of the "assortment',
A discussion of the normal density function for one random variable follows,

Let "urn" U be the set of elements (scalar measurements) represented by
all values along the a- axis in Figure 12.1. Partition U according to a parti-
tion of the a- axis into short intervals such as §. Let one value on 6, say q,
be the label attached to every value on 8, Then « is the value assigned to
every measurement represented by a point on 6., Let B be the mean value of
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all the elements of U. Finally, let the contents of U be distributed according
to the normal density function, f(a) (12.2), where the cross-hatched area
represents the decimal part of U labeled a.

. )
12.2  f(a) = L exp s-—i— (OL - B\

/ o]
TI‘.
Zoa oc/'

fa)

£(8) —
7

f(o)—

inflection pt.

l l
2 — RN NN TN

—— 0D
0 ot e oOL —] @
B
Figure 12.1

Before discussing this curve further let us define the statistical expectation
operator, E. If o is distributed in accordance with f(n), and g(a) is continuous
almost everywhere on ~ 00 < a < oo, then

Q0
12.3  the mean value of glo) = Efgla)] = f  glc)fo)da

Now return to Figure 12.1. The curve is symmetric. Using either the gamma
function or a table of definite integrals it can be shown easily that

(a) f"; fla)da = 1 .

0
¢! E(u) = j:oo of(a)da = g , where B is the mean value of q.
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(c) E(B)=8

(d) Ef@-8)=0

2, _ 2
(e) El(a -8)~] =0,

2 . l[ YA
where O, is called the variance,and Oy =Y 0y 1s called the standard
deviation.

(f) Approximately 2/3 of all the measurements in U have values on
B-og<a<Btoy.

It is assumed that § << gy . Note that § arises from the limit of accuracy

in reading the measuring instrument. For example, if we measured distance
with a scale readable to the nearcst tenth of a foot, we would have measure-
ments 5.3, 5.4, 5.5, etc., but not 5.37. If the true measurement were 5,37
it would have the label 5.4, Thus in Figure 12.1 any measurement falling on §
should be labeled ¢. The cross-hatched area is the probability of choosing a,
i.e.,

1
+-0
12.4 P(a) =f°‘12 fo)do ~ f(a)d
0,-'2‘5
Note that the curve is completely determined by 8 and oy. The standard
deviatior 0y, determines the shape (fat or thin), and the mean value, B, deter-

mines the position along the q-axis.

Suppose nuw that we have p independent measurements, [O"i} i=1...,p)

such that each raeasurement can be considered to be a sample from a separate
Hurn’ 1

aj € Uj

3
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Then
S |
12.5  fla;) = e exp ° L i Bi) ; (12.2)
. 1 ‘/21’[ Oa‘i ’ 2 OG‘i s .
and
12.6 P(a,i)wf(ai)ﬁi (12. 4)

The joint probability is determined as in 12, 1:

127 Play, o ehop) e 10087 flop)by, = £lo) ) £lop)o o0 8y,
2 2

1 1|18 % ~ Pp
iy 37 \Tou) T
(Zn)p g Oap ol Op

i

J‘él"' %
Define

12.8 f(a,l, e ap) = f(o,l) f(ap)

Since oy and o are functionally independent (i # j),

Q0 co 00
12,9 f e [t apa s dog = [ fapdda e [ flag)do, = )

Then 12. 8 is the multivariate normal density function and
00
12" 10 E[g(al’ e 'a[)] = j:a; ' .f g(al' C e ,d.p)f(d.l, LU | ap)dal v dap

Again due to functional independence

12.11 Efy;) = 8;

;
3
3
:
%
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2 ,
Gai (1 = J)
12.12 Elfa; - B Moy - )1 =) (i # )

Now we shall re-write equations 12,7 - 12,12 in matrix form. Defirn:

T
12. 13 [0 = [alsv'0’ap]

12.14 R = |'o§1 ¢

L @ ogp
Then
1 1 T -1
12.15 Plg)~ ~exp |-= (0 - B) R (a-B)&() v b (12.7)
(ZT;}p/Z‘Rll/& 2 1 p
1 5 1 T -1
12.1¢ fla) = exp {-= (@ -B) R (a - B)s (12.8)
(zmplle|1/z ) 2
0 -
12,17 f-'ob j fla)do, - -+ do, = 1 az. 9)
12.18 Efgl)] = f-7 - felo)la)da, - - da (12.10)
12.19 Ef{) =8 (12.11)
12.20 El{x - 8Ma-8) ] =R (12.12)

The covariance matrix, R, is still diagonal and errors in the measure-
ments, o and Gj {i # j), are said to he uncorrelated.

Consider a non-singular linear transformation, T, such that

12,21 o’ =Ta
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Then

12.22 R’ =E{{a’ -8 )a’ - s')T] = TE[{a - B)la - B)T]TT - TRTT

‘“he matrix, R’, is non-diagonal (except for particular choices of T), and
errors in the pscecudomeasurements ai' and ¢ are said to be correlated. We
shall show that equations 12.15 - 12.20 can be expressed in the new coordinate
system simply by inserting primes over the variables.

(

o0 <> a’
B <8’
12,23 < R «— R’
gla)«—>g'(a’)

o

<—> 51’

\
Define
12.24 29 = {a - B)TR'I(a - B)

This quadratic form is invariant under the transformation, as follows:

12.25 2p=(q-8) R ‘(-8

= (o = B)TTTT TR 1T Tl - )

-1

(0 -8 ) R a’-8") {12.21)

4

2

The normai density fu: ction transforms as

! ~®
12.26 f£(g) = s e
o @nP 2| 172
i} |T] o=@ (12.722, 12.25)

2,,)9/2|R |1/2

| TE’)
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The differential hyper-volume of the definite integral transforms as

7

dal'--- day,
|T]

oa

13

. o 0 - I.OO ,
12.27 da,l dap da da

1 % (8]

Combining 12.26 and 12.27 gives

12.28 f(or.)danl e dop = f(a')dal’ <o do,l')

Using 12.28 it can be shown that equations 12.15 - 12.20 are expressed in
the new coordinate system simply by mapping the variables as in 12.23. Th=n
f(o’) is the multivariate normal density function for variables with correlaied
errors and P(q’) is the probabilitv of selecting the random vector, a’.

From here on measurement errors are considered uncorrelated; so the
measurement covariance matrix is diagonal. One exception is correlated
doppler measurement errors to be discussed late:r.

We have shown that the normal density function for p measurements with
correlated errors is

1
(zrr)p/ZIR’I

ot -8}

12.29 fla’) = {73 °%P {-‘% (o' - B')TR

Now we wish to express the normal density function for n trajectory
parameters with correlated errors., Let

S = _xlw the mean (irue) value of an n-parameter state vector
X
L. n_j
S = r;flw an estimate of S
X
| n

12.30 T =E[(S - 8)(S - S)T] the state covariance matrix
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If n = 1, the normal density function is
) 1/5-x\2
12.31 %) = ——— exp d-L{E X ' (12.2)
2\ o~
2T g~ l X s
X

Starting with 12. 31 and repeating the procedure which led to 12.29, the
multivariate normal density function for the state vector is

!

1 ~ ~e]l oo
: 172 exp;-E(S—S)TI‘ (S-S)‘

em™ 2|

12.32 £(S) =

Note that the state covariance matrix will seldom, if ever, be diagonal. It
can be diagonalized, but this is time consuming for large order matrices and is
not done. One thing more: For the purpose of deriving 12.32 we should con-
s.der that the transformation, T, (12.21) was orthogonal ('I‘TT = I}). Then the
elements of S will be functionally independent. This results in simpler mathe-
matical formulations. To emphasize this remember that the elements of a were
assumed to be functionally independent, but the elements of o’ = To are not

functionally independent unless '1"'1 = TT. Notation for the elements of 12.30 is

~ 2
12.33 T =| ox O o~ v O
1 172 1%p
2 L]
%% %%
172 2 . .
. 2
Qrw * O
xlxp *p
L i

. 2
The variances, oy » may be expressed
i
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The elements Siagod (i # j) are called cuvariances. Rewrite 12,32
i

~ 1 -
12.35 £(S) = e

where

12.36 2= -85 1§ -5

Abstractly, this (12, 36) is the equation of a hyper-ellipsoid with p principal

axes. If T is diagonal, then the princip«: a.es are aligned with the coordinate
axes, and the errors in the trajectory parameters are uncorrelated.

Now we are finally at the point where we can process a set of radar mea-
surements to get a better estimate of the state vector. Let

T -1
12.37 29 = (0 -8) R (a - B)
and rewrite 12,15

1 -
e 6 * e e 6
emP/2|r|/2 1 P

12.38 P(a) ~

The a priori estimate of the state vector is S. The measurement vector is
a. We need to find the value of S which will make P(o) a maximum, All terms
in P(a) are constants except g = 8(S). Obviously, P(a) is a maximum when 2¢p

A
is a minimum. So to get a better estimate of S, we find the value S which min-
imizes 2¢. Review our thinking a moment. We can never know the true value

of the state vector; so our best assumption is that the true value equals the mean

~ A
value, S. Our current estimate of S is S. Our better estimate will be S. Now

find § (See Section 10.)

12.39 2= (0 - 8) R la - 8)

3T
12.40 @=5-%—=-

|
€5}
%

R (o - 8)
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is to measure a specified set of quantities at each time ti. For example,
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0% aBT 138
41 35 - -é—S—R 35 (disregarding 2nd order partials)

2 =88 =0

43 3 =3

40 §=FT+2 (5.5 -4
23S

45 §:=%

-1
9 ~
=] ¢
38
-1

T T
46 §=F4 B gt 28 gl 5
38 35| oS

or iteratively

-1

T T
; 3B o-138 | 38 -1,
=5+ R s~ R (a-8)

41 ntl3s 3s
n n

Sn+

Since R is diagonal we can write 12.47 as

-1
T T
PooB 198 | BB
48 Sn+l=sn+ ZrRi S ZS—R (G'i-Bm)
i=l ""n n i=1 n

where each o(,i is a subvector of ¢ and

49 R =E[@, - 8), - 8)7]

This (12.48) is a convenient formulation to program, since the procedure
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-~ 1. T B
a = | @, | = [range
“iz azimuth
Q. elevation
i3
L—a,i4_‘ —range—rate—d ti

as measured from a radar station at time ti.

A A
If we converge after n iterations,then consider Sn =S. Now to find T,
A
express S as a function of S, using a first-order Taylor series as in 12.45

-1
g (28
12.50 é-s-(as) 8

12.51 P=E [(é - 8)(5 - S)T] = E g(%%)nl@@'r (%ég)-ls

which can be reduced by 12.20 and 12.41 to
-1
-1 T
o (28) L et 2]
sz fe(28) 2| 2gt 2

Then 12,52 is the new estimate of the state covariance matrix, computed as

A
a function of S.
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13. SEQUENTIAL ESTIMATION — THE BAYES FILTER

So far we showed how to process a set of radar measurements to get a
better estimate of the state vector, and we found the state covariance matrix
associated with this estimate. This can be extended to fit the real situation
where batches of measurements are processed sequentially to estimate a state
vector changing with time. First review the propagation of small deviations of
the state vector #s in section 11.

Define
A
(S - S),1 the error in the best estimate at ti
(§ - S)j the error in the apriori estimate at tj
A A A T
T, =E[(S -S)(S - 8) ]
i i
'fj = E[(E;' - S)(S - S)T]j

Then {t. <t.)
1 J

. 3,
13.1 (S - S)j = asi (S - S)i and
13.2 rj = 3, L, 5, (11.3)

That is, the best estimates at ti are propagated to tj, where they are

a priori estimates., Let a* be a measurement vector.

Substituting S for g, write 12. 46:

T 7! T
A | d3r®T k-1 3gk]  apwT -1 "
13.3 (S - 8S) "["""as R 5| 3 R (- 8)
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This substitution is valid, because S is any good first guess; and hopefully
the true value, S, would be a good first guess (if not, we are in trouble).

Equation 13.3 is a linear approximation of the error in the state vector
estimate at time, t, after processing measurement batch, a*. Also

>

T -1
_ | 2% -1 3p#
13.4 = [as RS2 ] (12. 52)

Partition g% into two non-empty subvectors

T
13.5  a*= [Ta; ; E[(a-B)(on-B) ]1=R1;
T
. E[o-o-nT] =R
and
% =
R Rl 1)
¢ R
Choose a time tj < t, which is an appropriate time to process a- Then
(since R is diagonal):
-1
T T
A 0B 138 98
13.6 (S -S)j =35 Rl 35 35 R1 (o - s)l and (13, 3)
J J J
-1
T
v | 281 1%
13.7 I‘j = S-S-;.—Rl S-S—J- (13. 4)

Also 13.3 can be written

T -1 T
3B 38 T 38 T
A | Llg-l 1. 38 poB| | Llg-l. . 98 Rl -
13.8 (S-S)= 35 R1 55t 38 Ras 35 R1 (o B’l"as R “(a-8) (13.5)
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where
%, _ 28, 35 2p, _, 08,35 oS , 5.
13.9 rt L. _J AL o _Jpel_do ! (13.2, 13.7)
‘ aS 1 38 S as“,1 1 asj 3S 23S j 23S ’
: T
anlr -1 25, an -1 1 A
13,10 a—S—Rl (o - B)l = 35 'é-s'j—Rl (o - B)l 35 ].-‘ (S - S)J (13.6) .
as;r 135 5
=35 £ 3% as © - S);
-T15 -5 (13.1, 13.2)

Substitute 13.9, 13,10 into 13.8:

T
13,11 (S - S)-[ gg Rlsg-] [r (s-S)+_3_@_R'l(a-s)],

where the a priori I and S come from processing past measurements and
o is the next measurement vector to be processed, Note that 13.3 and 13. 11
are equal (if first order approximations are valid), although 13.3 was obtained

by processing o* at t, and 13.11 is from processing @, at tj and a at t.

This can be extended by induction to show that the final (é - S) (after processing
all of o*) is independent of the batching partition and times of processing. This
idea is emphasized by an algebraic proof in the final section. Since R is diago-
nal, 13.11 can be written

-1
T
1312 @-s=| 1 —ER‘IE&- T8 -5+ EELR"( ) (12. 48)
12 (5 -8) = ?as i 38 }i:as i lo-B) .

where each Q’i is a subvector of o such that all elements of °‘i were measured
at t.. This is the form of the Bayes sequential filter used by the RTCC, MSC

for Apollo trajectory determination.
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-1
T
A |~el oB; .1 %8
13.13 T=|T +Za—s—Ri 35 (13.4, 13.12)
i

which is the error matrix associated with the estimate in 13
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.12,
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l14. FORMULATION OF MEASUREMENTS

Consider a vector, [x vy z]T, expressed in a right-hand, rectangular
frame, If this frame is rotated positively through angle @ about the x-axis,

. T .
then the same vector is expressedas [x’ y’ 2z’]" in the rotated frame.

x’ ] 0 0 x
14,1 y'l =| 0 cosg sing y
z' 0 -sin @ cos @ z

If the positive rotation through angle § is about the y-axis, then

x cosg O ~sin x
14,2 y' =10 1 0 y
z'! sing 0 cos @ z

If the 1otation is about the z-axis, then

x cos § sing O b
14.3 y'|={-sing cosO O0|]y
z/ 0 0 1 z

Now we can formulate some representative radar measurements. Some of
these measurements are now in the Apollo Trajectory Estimation (ATE) program,
while others are just good possibilities for future programs. Also, some of the
fine points of the formulations are omitted,

Azimuth and elevation measurements are expressed in a topocentric,
(x’, y’, 2’), frame centered at the radar station. The x’-axis points east; the
y'-axis, north; the z’-axis, to the zenith.

14.4 7T = geocentric (inertial) position of the spacecraft. [10]

x
y
z
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14.5 'fs = r"xs" geocentric position of the radar station [10]
Vs
| %5
14.6 T’ = l-.x’ topocentric position of the spacecraft [10]
y ’
2]
14.7 o latitude of radar station
14.8 6 right ascension of radar station meridian
14.9 o range of spacecraft from r uar station
The vosition of tne spacecraft in the topocentric frame is
14.10 1’/ = T(?-FS) [10]
where
14.11 T = r—l 0 0 cos (6+90) sin (6+90) 0
0 cos (90-¢p)  sin (90-¢p) -sin (§+90) cos (6+90) O
| 0 -sin (90-¢p) cos 190-¢p) 0 0 1
- .
14.12 T =| -sin @ cos B 0
-singpcos O -singpsin@ cosg [1o]
| cos g cos 6 cos @ sin @ sin ¢
The azimuth measurement, A. is
§
14.13 A= tan-l(?-{-;-) [10]
y
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The elevation measurement, E, is

~1 z! _ -1 z'!
14.14 E = tan 5 5| tan 5 5 f1o]
p _Zl XI +yl

The range measurement, p, is

1/2
14.15 ¢ = [(x - xs)2 + (y - yS)Z + (z - ZS)2:| (1o]

Now consider some measurements taken from the LM on the surface of the
moon to the CSM in orbit.

Define
14.16 'fG = xG" =[rcosgcos ) selenographic position of LM on the [
moon

Vg r cos ¢p sin )\
ZGJ r sin ¢

14,17 ;L = XL_W selenocentric (inertial) position of the LM on the moon [11]
L
“LJ

14,18 L libration matrix, such that [11]

— T— T

14.19 r = LT, (L"L =1) [11]

14.20 ;c =[x selenocentric position of CSM in orbit [11]
Yc
Z
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14.21 Ty =P =T, - T =[xy, [11]
YcL
[ZCL

Then the following three measurements are from the LM to the CSM.

The pseudomeasurement D in [[11] is

z
14.22 D= sin [ =& [i1]
el
The pseudomeasurement HA in [11] is
_ Yy
14.23 HA = tan 1(-95) [11]
*cL

The range measurement is

l,_T_
14.24 |p| =¥ 7 b

Now consider some measurements between the CSM and LM when they are
both in orbit.

Define

14.25 ST = [xy z x y z] inertial state vector of the CSM

14.26 LT = [x z ] inertial state vector of the LM (not the

¥, and L of 14.17 and 14. 18)

L YL %L *L YL
Then

14,27 s=| 1 , L=|r

Hje
"
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28 p = ?L -T
29 F=T, - T

The range measurement is

_T_
30 p=¥P D

The range-rate measurement is

@ _ 4 ({5T5)
3L m\Ye py

The space-craft coordinate system centered in the CSM is as follows:

A T
32 e, =—
1 —
|7
33 é =._F._x_§_
3 —_ -
|rxv|
34 g2=_€1§_)_x_?_
I(-fx;)xFl

Then direction cosines from the CSM to the 1.M are

- _ -
- T
35 B=[B,]|= 2;%1

AT
Bz p ez
8 ATg
RET B A

e M.

5,
e
5
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Now we shall formulate the doppler measurement as used in the ATE pro-
gram. Another formulation will be given later when discussing the Kalman {fil-
ter powered flight processor. See Figure 14.1. [10]

vehicle

path of signal

c = speed of light x

Figure 14.1

P2

14,36 t=t_ -—
r ¢

14.37 o, = |z(t) - rr(tr)l
Initialize with t =t and then iterate using 14, 36 and 14.37 to find Py
14,38 I:t =t - —

14.39 o, = |TE) - 'ft(tt)l

Initialize with tt =t and then iterate using 14.38 and 14.39 to find Py
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Define
c speed of light
T counting interval
tr is the doppler time tag (at the end of the counting interval) and is

f doppler frequency

Wy = 106 Hertz = 106 cps, a bias constant

b a bias which can be estimated
v the transmitting frequency
W, a constant for signal adjustment

- - Py -
14, 40 =7t -—=) -FT @)
T [of T r

P
), 22
14.41 p3—-r<tr-—é— -rt tr-——?——
- - P2\ —
14,42 p2=r tr-'r-? -rr(tr-'r)

P\ Pyt
14. 43 31_?<tr'7'c_2)'rt<tr'7"lc 2)

Then the computed measurement is

Wy v
14.44 £= (wy + D)+ ——1Tlpg + py) - (p) + p,)]

the time the signal is received at the ceiving station

[10]

sy

Ik R,
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Note that

Pz =Py Py " P2,
T ~ Py T ~ Py
and
(D4V

14.45 f= (w, + D)+ ——[p, + p,] [10]

It should be understood that a doppler measurement is not a discrete obser-
vation at a discrete time, but rather a counting process over a time interval 1.
For mathematical convenience, however, we create an average frequency change
over the counting interval, affix an average time, and treat this pseudomeasure-
ment as a discrete observation. The pseudomeasurement corresponding to 14. 44
is

Kt ) - K({t - T1)
14.46 f = —b L

T

where K(tr) is the doppler count at tr. The average time ty associated
with f is the vehicle time for an imaginary signal received at the counting

interval mid-time, (tr - -g-) Then

_. _T_pE
14,47 ty = tr 5 4
where

14.48 7

o
=7t -1-—5—-?(1: -4
- r 2 ¢ r\r Z)

w3
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15. PARTIAL DERIVATIVES OF MEASUREMENTS

Some of the following derivatives are used in the Apollo trajectory pro-
cessor; others are just typical examples.

L A A

. e G 2 B

/
15,1 A= tan-l(%> (14.13)
. DA
Find 38
34 _3A 38’
dS 23S’ 3S
3A _ 1 1!, a(l)§_§’
15.2 35 - " 2[-;7 ""-788 + x 357 (37|35
1+ (';7)
2 5 1 x' dS’
=t )—, 0,000 0[+]0, -=5,0,0,0, 0fp=o
2 :21 y 2 0S
p -2 y
== '2[-y,x,0,0,0,0]as
p -2
Y
. ler aF
15.3 -§-§— = . .
ar’ ar’
k53 or _|
_-sin 0 cos 0 0 0 0 0 .
-singpcos @ -singpsin@® cos 0 0 0 :
_ | cospcos g cossin@ sing 0 0 0
0 0 0 -sin ¢ cos 9 0
0 0 0 -singpcos § ~-singpsin@ cosy
0 0 0 cospcos & cosgpsinf sino |
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aA _ -1 7 . 7 s /o . 6 I 9 7 oS * 0,0 O] [10]
a—s-—i-—lz[y sin @ -x’ sin¢@ cos O, -x sin ¢ sin B -y’ cos O, x’' cos p, 0, O,
o] - 2Z
I
E = tan ZZ > (14.14)
p -2z’
. ok
Find 35
8B _ L&) +ar L\ es!
3§ ,2 2,2 as') YL 2 ,2)|3s
14+ —== p - p -z
2 _
p -2
_ pz - zlz 1 ZI asl

[2x’,2y',0,0,0,0]

> Jpz - z,z {o,0,1,0,0,0] - 373 35

Z(pz - z’z)

7
2 5 1 5 {(pz - z'Z)EO,O, 1,0,0,0] - z/[x',y',O,O,O,O]}ES—

P Yo -2z’ %
[
I S {[-x’z', -y'z’, pz - z'z, 0,0, 0]}?—2—-
)2 22
1 A 1ot 2 ;2
Z e | x ‘2 5in @+ y'z ' singcos B+ | p” -2z cos «¢ cos g,
IR
[ [ 3 3 2 I2 :
-x'z2'cos @+ y'7  singsin @+ (p -z cos ¢ sin 0,
-y‘z’ cos (p‘l'(pz -z'z)sinm, 0,0,0]
JE 1 2 2
35 - [—z'(x-xs)+p cos @ cos B, -z'(y - yg) + p_ cos ¢ sin 6,
2, 2 2
P ¥ -2’

-z'(z - z25) + pz sin ¢, O, 0,0] [10]
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where
X - X -sin @ -singpcos § cos ¢ cos O] x’
15,8 Y-y, |=]| cos 6 -singpsin8 cos ¢ sin g y/ (14. 10, 14.12)
z -z 0 cos ¢ sin ¢ z/!
g 20
Find 35S
1/2
— = \T/—- - T
15.9 p=[(r-rs) (r-rs>] - V5 %5 (14, 15)

1
-;[x-xs,y-ys,z-zs, 0,0,0] [10]

1 %cL

15.11 D = sin” (14.22)

. aD T
Find 30 where Q = | o

A
r

First find 22 ; then :
arL £

é?«ﬁg 5,
0

T dr
oD
I e ) R (14.19)
°Q o

etk

£
0
o)
o

L e e Yy P
.-
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ST -r sinegcos A  ~r cossin )\  COs ¢ cOs A
15.13 369—= -r sin ¢ sin \ r cos ¢ cos A cos ¢ sin ) (14.16)
r cos ¢ 0 sin ¢
~ o
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15.38 of 1 (Used only when b is adjoined to the state vector, in
) db order to be estimated along with the trajectory
parameters)
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To evaluate 15.42 7 and b' are computed at time, ty (14.48}, by the same
iterative method used in obtaining 14.40 and 14.41.
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16. ESTIMATING THE TRAJECTORIES OF TWO SPACECRAFT
SIMULTANEOUSLY, USING BOTH GROUND AND
ONBOARD OBSERVATIONS

Early planners intended to estimate the Apollo trajectory by processing
onboard observations along with those received from the sparsely-located and
costly earth tracking stations. This was for two reasons: (l) It is possible for
a spacecraft to complete several earth orbits out of sight of the tracking net-
work. (2) The geometry at lunar distances precludes the successful use of
earth-based measurements other than doppler, which by itself may not reliably
determine a lunar trajectory. Sometime later, in order to minimize depen-
dency on telemetry and to simplify computer programs, the decision was made
to estimate the trajectories of the CSM and LM separately, using only earth-
based radar data. Systems of the future, however, will probably rely more on
onboard observations, and then such measurements between neighboring space-
craft may be used to adjust both trajectories simultaneously. This would be an
accurate way to determine their relative state vector when far from the inertial
origin. The mathematics for this is discussed for possible future use.

:
{

Inertial Origin

Figure 16.1
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Define (See Figure 16.1):
16.1 S =[7 CSM state vector
| F
16.2 L= FFL LM state vector
| L
16.3 B = rb_ relative state vector
0

. . . A . . .
First consider that an estimate, B, of the relative state vector is desired
during a lunar rendezvous, and onboard observations between the spacecraft

A A
are available. In the Apollo program S and L are estimated separately by the
following two equations.

-1
T

16. 4 (é-S).-.[T““lJrg@—R'lg—g] [”’1(5 S)+BB 'l(a-s)] (13.11)
T -1

16.5 (L - L)—[ LlJf%%"R“l%BI} [ (T - 1..)+aB R Yo -B)] (13. 11)

If the CSM ephemeris is assumed well-known and the LM ephemeris uncer-
tain (which is a real possibility), relative measurements between the two space-

A
craft could be used in 16. 5 to find L. Then

A A A
16,6 B=L-S

During rendezvous, equation 16.6 requires the subtraction of very large,
nearly-equal quantities, but this is handled accurately enough by the IBM 360
in double precision. This simple procedure gives adequate results in this case,
We can conceive, however, that in the future situations may arise where the
more general approach would be useful. That is, every measurement would be
used to adjust the entire twelve-element state vector.

S I
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First choose the twelve functionally independent basis elements of the state
vector; then all other elements in the space will be functions of these. A possi-

ble choice is [ST, LT] ; then B would be a function of S and L. But in order to

avoid the subtraction of 16. 6 and estimate B directly, choose HT = [ST, BT]
as the state vector to be estimated. Now all elements of H are functionally
independent and the elements of L are functions of S and B, i.e.,

167 L=S+B

16.8 H=|S
B

16.9 'FHE r sE[(ﬁ-H)('ﬁ-H)T]
~T ~
w I‘B

A
From 13,11 and 13. 13 the equations for estimating H are

-1
16.10 (H - H)-[H S’IB_I RI%%] [ ( - H)+aB R -s)]

and

-1
A aB -1238
16.11 PH_[FH aH R’ aH]

The partitioned forms of 16.10 and 16. 11 are useful as references in later
sections.
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Define:

T
38 -138
C =2—R

3B
38T -123g
16.12 ¢ M=2E-rT 2

T
N =28-r"e o)

[0 %

BT -1
(D =2-R"@-p)

Then, using 16,10, 16.11, 16, 12,

-

16.13 A =

and

>
= >

16. 14

s >
=
L B
o
I
——
s
=
i
+
O
L}
g
e

Note that the partitioned matrices can be inverted by 2.19.

The partitioned state transition matrix for propagating the covariance
(16.14) from time, to, to time, t, is

85 38
s | % ¥Bo
16. 15 S
OH, 3B oB
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It would be convenient to express 16,15 in terms of a5 and oL
3S4 3L,

these derivatives can be computed by methods discussed in Section 11, As a
worthwhile cxercise, we shall derive the required expression in two different

, since

T T .

ways., First, suppose we had chosen [S , L ] as the basis elements; then a
small deviation in the state vector at time, t, would be related to a small devia-
tion at time, ty, as

x 38 dS A 3S A
5 o~ o
S 38, dlLg %50 50 g %50
16. 16 = =
~ oL 3L A 3L A
5L = - || oL ) 5L
38, aL, ° 3L, °
where
16.17 | % [=|® - %
L] LL- Lj,
and
A A
8So S -8
16,18 A ={,
6L L-L ‘o
. 3S dL . . . . .
Notice that ——— = —=— = @, since S at time, t, is functionally independent
3L, 23S,

of L, at time, t,, and vice versa. This is apparent from examining the equa-
tions of motion, remembering:

T T 51 [F, -F
16,19 s=| |, L=| [, []. Y |
F T 5| |F,-F
where
16.20 ¥= -2+ g@, ¥ q t) (1. 1)

r
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' L~ 773 "B\t Ty P
L

16.22 p-T -T

Equation 16. 16 can be mapped into a propagation of [6§T 6§T] as
follows:

[~ - ~ A
1 ¢ |[s8 poo|[& 0 [ el 1 a5,
16.23 = ©
~ 5L A
-I I }]]8L -1 I I -1 I L
Rl v SLo
- 1 s =
6S 35, ¢ 8S,
16.24 =
~ dL 38 L A
__(’B 3L, 35, 3L, *Bo
. . . . 2H
The matrix in 16. 24 is the desired expression of EYT (16.18)., Now this
o

same expression will be derived by a more direct method. Assume that

[ST BT] is the set of functionally independent basis elements and pror~qation
is as

x 3S 38 A
MR | Y
85 35, 3By || %P
16.25 .
~| |am aB ||,»
8| | 55 55 ||oPo

From 16.20 S is a function of S,.

16.26 S = S(Sg)

Then
38 S
1 " S—————— = - ——
6.27 35, aso

B av—. e
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16.28 =

6 3B, Y

From 16.22 B is a function of S; and By,

I

16.29 B=B(Sg, Bp) =L ~-S (where Lo = Sgo + Bp)

i

L[ Lo(Sos Bo)] - 5(So)

Then, since

3B _ 3L %Lo 35 3L 3S

16.30 380  oLo 350 08S, oLy 35,
and
dL
le.3 2B _3L S0 3L

3Bo dLo d3Bo dLo
Substituting 16.27, 28, 30, 31 into 16. 25 gives 16.24 again.

This completes the discussion of the general method for using onboard
observations to estimate relative trajectories. The formulation could be modi-
fied in many ways to fit the requirements of specific situations. The process
leading to 16.6 is an example of such a modificaticn.
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17. MODIFICATION OF THE STATE COVARIANCE MATRIX

Up till now we have accounted for observational errors, assuming, however,
that the forces acting on a spacecraft are modeled perfectly as functions of pre-
cisely-known physical parameters. Actually our knowledge of these factors is
limited, and for simplicity of computations we do not always even use the best
model available. Questions arise, therefore, as to how we can account for any
adverse effects on the estimation. It is not intuitively obvious that anything
bad should occur, but on the contrary it seems that the estimates should always
continue to improve as more measurement batches are processed. Histori-
cally, in the initial testing of the Bayes estimation programs, the covariance
matrix, indeed, did get smaller and smaller, indicating a more accurate esti-
mate of the state vector; the sequence of estimates, on the other hand, initially
converged rapidly toward the true value, approached a minimum error after
about two orbits, and then slowly began to diverge. The estimation process is
equivalent to the method of generalized weighted least squares, where the a
priori state vector represents a pseudomeasurement weighted by the a priori
inverse state covariance matrix. This weighting matrix grows with each se-
quential step; so estimates become increasingly dominated by the a priori state,
until the effect of new measurements is negligible. This situation implies that
the estimates are always improving, which would be true if the dynamic model
were perfect. The neglected errors of the real model, however, cause the pro-
pagated estimate of the state vector to depart farther from the truth. Hopefully,
this would be corrected by processing the next batch, but the dilemma is met
when the effect of the next batch becomes negligible. Then the shrinking deter-
minant of the state covariance matrix ceases to truly represent the growing
state estimate error, which is induced by propagation and uncorrected by
estimation. A major problem in implementing this program is how to consider
nodel errors in a way to achieve optimum estimates with errors correctly re-
presented by the covariance matrix, All the tried methods have involved modi-
fication of the state covariance matrix. The simplest way is to consider that
the origin of model errors is unknown; then multiply the matrix by a scalar > 1
when the determinant appears too small. A frequently-used manual control for
this is in the real time system. Another approach is to guess the most likely
sources of error, such as atmospheric drag, fuel venting and gravitational
constant, and derive a term to be added to the state covariance matrix in pro-
pagation. This way, used in the Gemini program, was justified as an applica-
tion of proper corrections to respective components. It took a lot of computing
time, however, and seemed no more effective than the first method. A variation
of the latter, which considers the model parameters in propagation of covariance,
is in the Apollo program (Section 19). It has also presented many problems and
has not yet proved completely satisfactory. Another approach (Section 20), as
yet untried, is exponential downweighting of past data with respect to time.
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This reduces the observation arc length to one that can be accurately repro-
duced by the model, and it also has the advantage of producing estimates
independent of measurement batching and times of processing. [9]

The remainder of this section will present a general modification of a state
covariance matrix with the intent of determining what can be done, what does it
mean geometrically, and what are some reasonable criteria for evaluating any
scheme for altering the state covariance matrix.

Define
17.1 S true value of state vector, (p x 1)
17.2 S estimate of S
17.3 85=5-s state error vector
~s ' NT . .
17.4 T = E(6S6S7) state covariance matrix
17.5 T a non-singular transformation with complex elements,
(p x p)
17.6 T* conjugate transpose of T

Then the most general modification possible of 68 can be represented by

T5S; the most general modification of T, by

17.7 Ty = E(T6868T T%)

The problem is to choose the matrix, T, to modify T in a manner Jjustified
numerically as an advantage to the processor. For now, however, we shall be
concerned with developing criteria to show whether a particular choice of T is .
reasonable, rather than with making the choice. Actual choices will be made at
the end of this section and tested against the criteria. To start with we assume

that T is diagonal. After all we-are trying to preserve the past history, I', as
nearly as possible, merely giving it an empirical '"nudge'' to correct some
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dilemma in the processor. To do this we should choose the simplest transfor-

mation possible. If T were non-diagonal, the change in T would probably be
complicated, drastic, and difficult to justify. With this assuruption the jth
diagonal element of T is the complex number

17.8 T. =C. +1iy,
JJ €J YJ

where gj is a scalar constant to be chosen and y, is a zero-mean random
J

variable uncorrelated with state noise, such that

V0 (i # k)

2 ~
and nj is a scalar constant te be chosen. Defining Yj as a random variable
in this way ensures that the modified matrix, ﬁx (17.7), will have real elements,

whereas vy as a constant would result in complex elements.

If ST =[x . xp] and

[

17.10 'f=[oij] G,j=1,..., p)

Then by 17. 7 the elements of T correspond to the elements of F* as

e i4]

5.0, .
i%jij

17.11 cri. —

J 2, 2 .
(Ci ¥ ni)oii t=)

17.12 (Note: o.z-=-c..)
i ii

Fea s
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Note that the matrix T’y is still positive definite, since

17.13  |Ty] zg? gg IT] >0

The geometrical meaning of this transformation will be illustrated by con-
sidering a three-dimensional state error vector,

17.14 85% = [6%, 67, 62

and a matrix, T, which modifies only the 8z component,

17.15 T =

1

)

¢+ iy

(NMe:g+175g3+i§y

(17.

Then the modified covariance matrix is

17.16 Ff:* =

2
o
X
o
Xy

Cao

Xz

o
Xy

2
g

y

Qoyz

~—

¢o

Xz

Ccyz

(Qz + nz)oz

8)

Let pij be a correlation coefficient, i.e.,

17.17 cij = pijoioj
Then
E
X
17.18 Ty =

Vs

-
1

1) pxy
Pay 1

C’g‘— épxz gpyz

s |

=Y

(17.11)
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%% 0 ! Xy QZ + 2Pxz| {%x 0
o o i 9 P o
y Xy ‘{QZ VLS y

’z 2 C ¢
o ¢ oﬂ L’Iz_z—*.-?pxz mpn ! 3

The quadratic form associated with 17.19 is

17.20 2o

17.21 29-

NTN..l ~
TR I A o, T
ox Xy JC—Z ; nZ Pxz ox
5%, 65 6z L . o 1
' CZ + "’]Z oy pxy "gz + nZ pyz oy
1 ¢ ¢
¢ P o P ! ¢
02_J JCZ + nZ Xz 'IQZ + nZ yz |

Inspection of equations 17.16 and 17.21 shows the constraints imposed in

the choice

Some

a.

of { and nz and also the geometric significance.
examples follow:

First notice thav if { = 1 and nz =0, then T = I, Ty = T, and the

quadratic form is unchanged. If various values of { and nz exist to
cure the same problem in the filter, then the choice should be the
values closest to these fundamental values.

. A constraint is that || = ng + 'r]z . This means that a multiplier,

gz + nz < 1, cannot be used on ci, if ¢ = 1 for the off-diagonal terms.

For example, initially in the Apollo program an attempt was made to

DV e i . s
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modify an augmented state covariance matrix, T o~ | by
w I‘q

multiplying IP‘Jq by a positive scalar < l; the resulting matrix was not

always positive definite.

r T o )
> 0O<1+n £1)
W T w (L +n )
q q

c. If { =0 and 'qz = 1, then the covariance matrix remains unchanged
except that elements multiplied by  are zeroed. An example of
this is the valid procedure (under our rules) used in the Apollo pro-
gram to modify the matrix as

r 2 T ¢
W T ¢ T
q q

d. If 'qz = 0, then the 67 component is re-scaled (multiplied by -é—), and

correlation coefficients are not altered (17.21). Or equivalently, a
row and column of the covariance matrix is multiplied by { (17. 16).

This was used instead of b, above, to decrease the value of Fq as

r T Cw
— 0<(<l)
W r Cw ¢T
q q

Another example, used in the Apollo program, and also in exponential
downweighting, is the multiplication of the entire matrix by a scalar as
r~ 2~

r

¥ 1 <c?
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e. If \/-C,2+'n2:

by (, and no components are re-scaled (17.21).
used in the Apollo program)

r o T
—
W r Cw
q

f. Now refer to equation 17.16,
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1, then the 8z correlation coefficients are multiplied

Cw

T
q

2
n 0, = k, a constant, then

ad 2
17.22 ]_“* = FUX O’XY OXZ
) 02 o
xy Yy vz
2
g o o +k
XZ vz z

vasy

o

(0s¢< 1)

For example (not

If {=1 and mn is chosen so that

All we have done is add a constant to a main diagonal element. This
is the method used in the LM powered flight processor [12]. This
method was arrived at by considering the model errors in the deriva-
It is interesting to note that we can arrive at the
same method empirically, using the rules of this section.

tion of the filter.

From this we can compute the effects on re-scaling and correlation result-

2
ing from various other choices of { and 1 .

We start out knowing that theoreti-

2
cally the best { and 1 are as in (a) above, and any deviations from this should
be justified numerically.

PN
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18. ESTIMATION OF MEASUREMENT MODEL BIASES

The mathematical model of a measurement may be a function of a bias
element such as the scalar, b, in 14.44, Although b is essentially a constant,
its value may drift slightly and is not known precisely; so th.- hest estimate of it
is used in computation. Because of this the filter is designed to allow the tra-
jectory controller to alter the process at any sequential step so as to include
estimation of the bias elements. Mathematically this is done by adjoining the
bias elements to the state vector,then estimating this augmented state vector,
and finally contracting the augmented state vector and covariance matrix back
to their original dimensions. After this the filter proceeds in the usual manner
(unless interrupted again), and the new values of the bias elements are used in
modeling measurements. In the following discussion we show how to alter the
{ilter to estimate bias elements and then return it to the original form.

Define
bl
18.1 b=l" mean value of the bias vector, the elements of which are
. bias constants.
b
q

Conforming to previous notation:

18.2 b a priori estimate of b
18.3 8b=b-b
A
18.4 b improved estimate of b
A A
18.5 &b=b-b
18.6 t;< ty <ty anchor times, where t; is the time of estimating b, and .

tj and tk are the next two anchor times.

From here on the derivation is just like equations 16.8 - 16. 14 with B
replaced by b. The augmented state vector to be estimated at time, tj, is

18.7 HT =[sT, bT] (16.8)
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~ ~ ~T
18.8 I‘H=E(6H6H )= (16.9)
W b
Define
~ ~ "1 ~ ~
18.9 T w - v
~T oy ~T ~
w Fb Q

~

The augmented state vector, H, is formed at time, t;, and since we have no

prior knowledge cf a;, assume it to be zero.

18.10 w=¢

Then 18. 9 becomes

~ ..1 ~
18.11 r ¢ _|G ¢
T, ? Q

Combining 16.13 and 18. 11, the filter for estimating the augmented state
vector is

A ~ - ~ ~

S-S G ¢ A C L G pl1Ss-S8 N
18.12 A = ~+ T - +

b-b ] 0 C M @ {lb-~-b D

where

~ & A

18. 13 G+ A C - A"
~ A A
cT gem| VT
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. AT AT | , ,
The solution to 18, 12, [S b ], is the improved estimate of the augmented
state vector at time, t;, and 18,13 is the associated covariance matrix. These

(18.12, 18.13) are propagated from time, t;, to time, tj, where the next batch

of measurements will be processed to estimate S only,

That is,
A ~
S S
18.14 N ad N
b b }.
1 J
and
A A ~ ~
G Vv G v
18.15 g
A ~ ~
vi o4 i SR j

The quadratic form to be minimized with respect to S at time, tj, is

¢ vils-s
18.16 29=[E-9"G-0" ). [l. |te-8R -8
v odls-b

Using the methods of Section 12,

3T G V||8-s| T
18.17 s=25—=[-1 8] . _|[~ -5~ R7@ - 8)
vtoadle-o
T
3z, 8l -1
18.18 S2=G+5E-RTEE

18.19 §e -s=-(ﬂ) 8
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ol

-1
T
A i 38 o108 as
18.20 s€~s_[ +2e—R as] [G(S S)+V(b-b)+ R o -B)J

A
where Se is the vector to which we would converge if we knew the value of

’I;-b. Since we do not know th:., we define
A A All~ o~
18.21 S ES6 - Véb
and
T
A~ 3B -1 38
, =G+ = =
18.22 Q=G 3S R 35

Then equation 18.20 is expressed as

18.23 (§-85) =0 [E("s' - 8) + gg R - e)] (18.20-22)

A

where convergence is to the vector, S.
A A

Now we show that Q = G, as follows:

By the method of 12,51 and 12.52,

A A A A_ r~ Py

18.24 I =r£(6887)-Q [GI‘G ¥ gg g2 gg] (18.23)
A ~o

18.25 o= E(6860T) = A% (18.23)

6 T =T

18.26 T, =T
A A A IS D]
G v r w

18.27 = (18.9, 18.24-6)
A A A ~ !
VT Q wT I‘b
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Ao A ~
28 G 1=t - &Fbl&T (2.20, 18.27)
and similarly
20 &' =T-GT T (2.20, 18.9)
from which
30 E'I\'"{)lu) = I"\“ - 5'1
Substituting 18,24 and 18.25 into 18.28 gives
A-1 Al d8 138 S L O o |
31 G " =Q [GI‘G+aSR BS] 'Q(JFU)GQ
~ f ~ - #ot A e
32 1B(F -8 1)GQ b (18.30)
A _1 ~ 1
33 -Q [GI‘G G Q (18.32)
34 G- 6'1-'6 +£"E’—TR'19g Q! (18.22, 18.33)
B 3S 3S PET e
AL AL
35 67 l=q7t
which was to be proved, and 18.23 can be written
T
A aa -1
36 (S-S)= G(S S)+=—R (@ - B8) (18. 35)
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This equation (18.36) was derived using a rather {...lamental approach, starting
with 18. 14 and 18. 15 and forming the quadratic fo.vr, 18.16. A quicker deriva-
tion which provides less insight is as follows: As ir 18.14 and 18. 15 we start
with the a priori quantities

S [,
and

) T

. A\ ;

J J

Ot

b

Then as in 18.12, the filter for estimating the augmented state vector at
time, t, is
J

A

S-S & v] [a ¢ }'l G V|{S-s N
e ',b-b Rk Q ' ct MS vEOSUlE - ' D
where
¢ v][G +a ¥F+c roog ]
830 Ve o4 ) ViicT gam ) wr f“b

Modifying this filter to estimate S only is equivslent to setting

A ~
18.39 b=b=>b

Substituting 18.39 into 18.37 gives

A A A 7 ~ ~ ~~
S-S r w s G vVis-=s N
18.40 = +
NT ~
¢ W T, } AN ¢! ¢ D

from which
A A~ A A NT ~
18.41 &S =T(GdS + N) + w{V " 8S + D)

"~ ~ A ~S "~
18.42 ¢ =@ (Go6S + N) + rb(vTas + D)
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~T ~
Solving 18.42 for V 8S + D and substituting into 18.41 gives

A A AA_IAT ~ o~
18.43 65 = (T - uJTb w MG6S + N)
and
A ALl ~ ~
18.44 (S-S)=G [G(S -S)+ NJ] (18.43)

which is the same as 18.36. This latter derivation is worth remembering
for those cases where the state vector is frequently augmented and contracted.
Then 18.37 can be the basic filter, which is altered by the input, 18.39.

Equation 18. 36 provides the estimate at time, tj. The state vector and

covariance matrix have been reduced to the original dimensions, and the bias
vector has no effect on subsequent estimates. Notice that the solution of 18,36

A
requires propagation only of the partition, Gi’ of 18.15 as

A ~
G —qG,.
1 J

The augmented state transition matrix is

~as., as ] [as. ]
J J J ¢
35, b 35,
18. 45 =
db  3b
= 9 I
|35, ob | | _

and the inverse is

18.46

R N
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The transition of 18. 15 is

r~vasi¢é%asi¢
G —— P
18.47 = asj asj
~T ~ AT A
Ve ol. ¢ Ijiv: .l ¢ 1
j =
from which
- as;rh asi
A I
j j
or equivalently
38, , as.T
18.49 &7 loJdgrt
J aSi i aSi

From here on the sequential estimation procedure is defined by 18.36 and
18.49, regardless of whatever label is assigned to the matrix, G. So replace

the letter, G, by 1".'1 in 18.36 and 18.49, and we have returned to the original
filter and notation.

The results of all the above details can be summarized in the following very
simple procedure. After estimating the augmented state vector at time, ti, we
have

Lo

3 1

= (18.9)
A A
VT Q

>
Q>

18.50

]
> E>

bl;

.

Then the filter to estimate S at time, tj’ is

-1
T (-1 T
18.510 (§-5) = |F'+2B-r1TE | IG5 + 28 r g
Tl R T j

L’ j i
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where
s, oSt
~x a1
18,52 TJ_ Bsi Gi BSi (18.36, 18.49)

and subseque.i. :stimates and notation are as in Section 13.

In the ATE program this procedure has been modified. Equation 18.51 is
used, but 18.52 is replaced by

3S, , 35T
18.53 T, == =2
' j T35 138,

A
This is equivalent to setting the partition w, = ¢ in 18.50, as in example (c),

Section 17. This modification does not give any computational advantage but it
is permissible by the rules of Section 17 as long as subsequent estimates are
not degraded significantly.

St e
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19. CONSIDERING DYNAMIC MODEL PARAMETERS
IN PROPAGATION OF COVARIANCE

In Section 17 we mentioned that the state covariance matrix is modified in
the ATE program by considering the variances of dynamic model parameters in
propagation, even though the parameters are not estimated. In this section we
show that these considerations, by themselves, leave the filter unchanged. The
ATE method is achieved, however, by including an empirical modification to
the augmented state covariance matrix.

Definitions
19.1 j=i+1 (i=0,1,...)
19.2 ti time of processing the ith sequential batch of measurements
19.3 tj the time of processing the next sequential batch after time, 1:i
19.4 S, state vector estimated at time, t,1
i

M
19.5 q = [ ] vector of dynamic model parameters

“q

s
19.6 q] augmented state vector at time, t

|

e Nl ~ ~ ~~ _1

r W G v

19.7 = a priori augmented state covariance matrix

Lw r Ve Q

-4 i
. .th
19.8 (a - B), vector of residuals of the i batch
i

19.9 a =28 g-128
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Note that generally, the notation is as in Section 18, except that b is
replaced by q.

Initial Assumptions

The basic filter is modified using these assumptions:

(1) Wy =9 . {19.7)
(2) S, only, is estimated

(3) The updated augmented state covariance matrix is propagated as

A A ~ A

T w T w

T 7 | ~r

A ~ ~T ~

W T w T
aj; qj

Note that I‘qo is input to the program, and then T‘qo = I‘q,1 for every i, This

is because S, only, is estimated.

The Modified Filter

The a priori quantities at time, ti’ are

3 T 9 ¢ v|!
19.11 and = (19.7)
q |. w T A\ Q.
i . i

with only S to be estimated. We showed in Section 18 that the filter for
this is

~ -1 ~ Nt
19.12 (5 - s), = [G, + A1 [G,E - 5), + ;] (18.36)
where

19.13 &i =G, + A (18.22, 18. 35)

R N TE: T/ Al AR PV )
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and the necessary propagation of covariance is
1 95,88
19.1 NS e .49, 19.27, .3
9.14 Gj asi G.1 BSi (18.49, 19.27, 19.31)

So the modified filter which results from the three initial assumptions is
defined by 19.12, 19.13, and 19. 14.

What to Prove

The basic filter derived in Section 13 ie

-1 ~

-1
19.15 (S - S). = [?.’1 4 A.] [ﬁ §-9) + N.]
i i i i i i

where

il

~-1
T+ A,
1 1

h-1
19.16 fi

and propagation of covariance is

- aSj A BS:jI‘
19.17 I‘j=s“s"-i-1-‘i“a‘§:—

(Note: Do not confuse fI“Ji in 19. 15 with ’f‘ii of 19.11. They are not the

same, except at time, ’co. )

In order to prove that the basic and modified filters (19.12 and 19. 15) are
identical, it is necessary and sufficient to show that

~ r.«_l
19.1 = =0,1,...
9.18 G =T (k=0,1,...)

for all k.
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Proof
Proof is by induction on k.
k=20
19 Wy = ¢ (assumption 1)
~ [~ SRV, RO
20 Gg = [ o = Wolg ‘”o] =Tq (19.19)
k=i
21 Ei = 'f‘dl-l (induction hypothesis)
-1
T
(284,98,
22 G =\ 556G, 33 (19.14)
i i
- -1
38, » as;‘r
23 = -a—s—'—(G +Ai) o (19.13)
i i
- -1
5, .| -1as;:
24 =55 (0] + Ai) 5 (19.21)
| T i
— -1
25 =38 Tiss (19.16) ,
st i
~-1
26 = I"j (19.17) *

Therefore, the modified filter is identical to the basic filter.
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An Empirical Modification

In the ATE program the modified filter is used together with the empirical
modification of Section 17, example (c). By assumption 3, covariance is pro-
pagated as

_ - 1 Tt e 7 o
~ o~ S, 38 ) ~ o~
T % o il W | (%% ¢ | ¥
35, 39 35,
19.27 - g (107
T
3s
~T  ~ AT o~ : ~T ~
w T, ¢ 1| T 5;‘-— I A
- _.‘J — - e -1 (O e ....J
B ]
2S,, 35 35, 35] 85, .95, @3S, 95 25, , S,
SR QN B —" b + —dy +—T
55 1135 '35 %i3q "3q % 38 '3g lqd3q 35, Yi *3q 'q
i 1 1 1 1
19.28 =
- 35T as’ B
e R T
i 98, q 39q q 1

~

The partition, Gj’ for use in the filter (19.12) is computed as

...1 ~s NN—lNT
19.29 G, =T, -w,I' w,
J ) J a4 ]

At this point is the empirical modification. The partition W, is set equal
to zere, so that J

1 95, SHEECH as;l 3, \p 35) 5, asf
o= . =ty =L — 19.28
19.30 Gj asi I‘i aSi +asi W, 3q 39 w, asi +aq I‘q q (19 )

Note that, without setting w,. = §f, substituting the partitions of 19.28 into
19.29 gives J

19.31 Gj :aSiGi -a-é-;-
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which is equation 19. 14,
Comments

Certainly the use of 19,30 (rather than 19.31) complicates the filter. The
question is, however, does it help cure the problems discussed in Section 177
Of course, some experimentation would be required with any empirical method
in order to obtain satisfactory results. For example, in the Gemini program

~

the matrix, G, was modified as

35. 35, _ aS.
1T (3]

3s, ,
d 4
iaS].L 9d q 939

19.32 Gj —aSiI‘

This program (19.32) was tuned to give excellent results by adjusting the
elements of Fq’ Based on this success, then, it was reasonable to hope that

19.30 could be used in the Apollo program as a more versatile version of 19, 32.
Due, perhaps, to the greater model errors in the Apollo, primarily arising from
an inadequate model of SIVB venting, the method so far has not been completely

successful. Further adjustment of the values of ’f“q may improve the effect.

Exponential downweighting of data, explained in the next section, is another
method which should be considered, particularly when measurements are pro-
cessed in batches. Variations of 19.32 work well when measurements are pro-
cessed singly, as in the Kalman filter (Section 21),
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20. EXPONENTIAL DOWNW) (GHTING OF PAST DATA

In Section 13 we derived the sequential, weiphted, least-squares filter, and
in Section 17 we discussed the assumption that the equatious of motion model the
trajectory "perfectly'. For the purpose of our derivation this assumption is
equivalent to saying that first-order error propagation is valid. Since the model
is not perfect, however, there is some trajectory arc length beyond which the
assumption does not hold. This problem can be avoided by letting the observa-
tion weight decrease exponentially with time at an appropriate rate; so then, in
effect, the filter is always applied to a segment of past trajectory short enough
to conform to the assumption. This method 1s «imple to implement and adjust,
and estimates do not depend on observation L..:- . 1g or times of processing.

The method works as follows: If R is the covariaance matrix of a measure-
ment vector at time tj; tg, the aunchor tirie for convergence; e, the base of

Napierian logorithms; and A = 0, a chosen scalar constant; then the modified
covariance matrix is mapped from time 1'0 to t, as

1

d3S. A, -t e, - t) 35. a8 A, -t asT

L 1"0)[ g = _]"1““3e 1'1)R_ 1
1 - g 1

35 35, 85, EN

where Si is the vector of functionally independent trajectory parameters at
time t;. Thus the multiplier, e)\‘m, is always used when mapping covariance

over the interval At. We prove that with first-order approximations valid (as
required by our Bayes trajectory processor) the mathematical consistency is
retained. That is, if we partition a finite set of measurements into non-empty
subsets for sequential processing, the final estimate is independent of the par-
tition, the sequential order, and times of processing. The following is the first
step of a proof by induction, In the last section we present an algebraic proof.

Let o be a p-element measurement vector. Then from 13.3 a better
estimate at time t_ is

1
T Lo
A | 3" ,-1038 f " -1
20.1 (S -8) = ) R 55, 35, R (o -8)

ot .
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Since the observations are uncorrelated in time and R is a

diagonal matrizx,
equation 20.1 can be written

,r - 11-
A ) c*)al -1 “1;31 2 c)Bi 21 _!
20.2 (5-8), = .5_: §"§'Ri $5 | gg_Ri (u-p)i
i=1 1 1 i=1 1

This ( 20.2) is modified using exponcntial downweighting as

-1
T . T
A p aﬁi Mti-tl) -1 éBi D dri.l )(ti—tl)
2 - S = JEER s i -
20.3 (5-8),=| 2 55 R 3 ; 38, °© Ry -8
L=t 1 1 i=1 1

and equivalently

_ -1
T
A Zk: 28, M-t | 98, z": Mg My -t %
20.4 (S -8), = e R, —+ a— R, = —
S e POOS) i 95y P05,
[ T T
k 3B, At -t ) p 3B, Mt -t)
i R"I(G-B) "'Z i IR-‘(G.-B).
117129 ! L 95 i :

where (0 < k< p)

If the first k measurements were processed at time t_ < t. , we would

0" "1
have
T -1 T 7
A f: 3B ME -t ) 28, o8 Myt L,
20.5 (S -S),= —_— R, — —e R, (a - B).
0 | aSo i aSO | aSO i i
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Now consider the expression from 20, 4:

T
20.6 2 eMti _tl)R'l-a-B—i
i=1 95 L a5,
T T
38, p)\(to-tl) k 3B, euti - tO)R_l 38, |38,
3 1 l_i=l aSO i aSO BSl
—ii— R tl)f‘l———aso -l 20. 5)
=35 ° 0 38, 1 (20.
1 1
And also from 20. 4:
T
k 38, Al -t)
20.7 Z 55 ¢ R, (o,-s)i
i=1 1
d3S. At t)kaTMt t )
_ 20 Mot ZBie LSS .
aSl in1 BSO i i
T
_ 55 Meq - tl)f'l(é s) (20. 5)
"as1 : 0 % )
3ST Mt. -t.). . 3S. 38
.0 Mo M Oal(" s)
= G
35, 0 35, 3€, 0
T 1§ - s
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Substituting 20. 6 and 20,7 into 20.4 gives

T
1 ~-1 {, 0By At -t)) 9B,

20.8 (§-s). =| Tty e R
1 1t & 35 i 38

T

~] ~ p api Mti - tl) 1

Iy (-8 + 2 55—e Ry lo-8)
i=kt1°°1

This (20. 8) is the sequential estimation formula, where the first k measure-
ments were processed at time tO and the rest were processed at time tl. It is

equivalent to 20.3, where all p measurements were processed at time tl. This
is easily extended by induction to show that 20.3 is the final estimate at tl after

all of q is processed, regardless of the batching partition and times of process-

ing.

In implementing this method )\ should be adjustable during tracking. The
value should be large enough so that the segment cf trajectory considered con-
forms tothe model, yet small enough so that past data is not needlessly wasted.
The value of A should increase with the uncertainties in the model. For exam-
ple, an earth orbit with drag and venting uncertainties would require a larger
value of \ than a precisely-modeled earth-moon trajectory. Appropriate values
of A for different mission phases and vehicle configurations can be determined
empirically with data from prior missions, Also \ can be made adjustable dur-
ing the tracking by a manual entry in the program. Preliminary experimeatation
with this method showed that, when the model did not conform to the true orbit,
the estimate was improved by inserting some small A > 0. Of course down-
weighting vanished when A = 0. Also the sequential estimate was the same as
the estimate obtained by processing all observations in one step.
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21. THE KALMAN FILTER

The theoretical derivation of the Kalman filter considers errors in the
dyna-ic model. If we assume that the model is pei.ect, then the Kalman filter
becomes just another algorithm for the sequential, weighted, least-squares fil-
ter already derived. We shall show this relationship and then mention some
advantages of each of the two methods. [5]

The Kalman filter is derived directly from the Bayes filter (13.11) as fol-
lows: First write the Bayes filter.

T -1 T

21 § = | T gl _t Tl Fi gl 13.11
1 (S-8)= T +zi_:-—R. N r \S—S)+iZaTRi (@ -8yl (13.11)

where o4 is the vector of measurements taken at time t, and

-1
T

212 p= Tt %% R'lasi 13.12

1. T'=]T +};_:a—-s—ig's— (13.12)

Choose to process each measurement vector singly as it is received; so
there is only one measurement vector in each batch. Accept the first iteration
of 21. 1, rather than iterating until convergence criteria are satisfied. Then
21.1 and 21.2 can be written

-1
T T
8.9 M2 a 2] [ n )
21.3 (S-S)-[l +2E-R aS] [S-;L—R @ -8 @11
T ‘|‘1
A |~-1 3B -13p
21.4 r"[r +5e—R7 £ | 21.2)

where g now denotes one of the q; with the subscript dropped and 'ﬁv = B(g)

is the measurement vector computed as a function of the a priori state. The
Kalman filter is another algorithm for computing 21.3 and 21.4 as follows.
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Consider the following three equations:

-1
T T w
21.5 KzrﬁLFﬁrﬁL+R]

35S |3S S
A~ ~ ‘
21.6 S =8+ K(o - B) Kalman filter
A _ _a_@ ~
21.7 T = [I - KBS]F

/

To show that 21.3 and 21.6 are equivalent we prove the following identity:

-1 -1
T T T T
-1 3B~ p-10381 3B p-17 x3B |9Bx3B =
\:l t3s R as] s R “T3s|estas "R °F

T
Multiplying on the left by [?_1 + %%— R-1 -2——2—] and on the right by

T
OB ~ a8 N
[—S T 35 + R] gives

d
T T 10 T T
QLR_I QQF.B.E_.FR = ff—l+_a_§_.R-1_a..§. 'f"é.@__
3S dS ~ 3S 38 dS dS
T T T T T T
8" p-l3pwap .38 _3B p-loBwdB 2B
dS dS " 3S S 95 dS ~ 23S 3S
3 T
Define M = S%_ of dimension m x n, (m >n). This is commonly the case.

For example, in the Kalman powered flight filter for the LM lunar ascent and
descent the measurement vector has four elements and the siate vector, twenty-
one. [12]

To show that 21.4 and 21,7 are equivalent, prove the following identity:

(&1 MR-IMT]_I z {1 - Fm[MT ™ + R]-lMT}F
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. ~-1 -1 ~-
Multiplying on the left by [I‘ + MR MT] and on the right by T ! gives

~

r]:' ~

¢ = M[R“1 (T 4 R>-1 _rRIMTEM(MT T ¢ R>—1_|MT

Now multiply on the left by M'1 and on the right by M"T. (M has a left

. T . .
inverse, and M~ has a right inverse.)

-1 -1
g=R"" —(MT'\IJ‘M + R) - R“lMT”fM(MTrM + R)
Multiply on the right by M. TM +R .
g-r (MTFM+ R)-1-R'MTTM

0= R MMTEM 4R - MTEM) -1
p=9

Comparing equations 21.1 and 21.2 with 21.5, 21.6, 21.7 we can summarize

some of the major differences in the weighted, least-squares (Bayes) and Kalman
filters.

The Bavyes filter iterates until convergence, but the Kalman accepts the first
iteration. The iteration of the Bayes filter sclves a system of non-linear equa-
tions by producing a sequence of linear approximations converging to the final
solution. So if the Bayes iterates more than once, it normally produces a better
answer than the Kalman. We say 'mormally' because if the first guess is not

close enough, it is possible to have non-convergence or convergence to the wrong
answer, [13]

The Bayes filter can collect measurements and process them in batches at
arbitrary times, whereas the Kalman must process each measurement separately
at the time of the measurement., If the Kalman observations are close together
so that the propagation time interval is very small, it may be difficult to modify
the cuvariance matrix as a function of time. This is because the modification is

DATE 5/9/69
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too small to appear in the computer. The Bayes filter avoids this problem by
choosing anchor times suificiently far apart. The problem with the Kalman fil-
ter can be resolved, however, by modifying the covariance matrix at predeter-
mined time intervals, rather than at the ohservation time.

The Bayes filter is particularly well adapted to estimating free-flight tra-
jectories of long duration, where the obsc.rvations actually are received in
batches. Then each batch can be processed as it is received to update the state
vector, The Kalman filter is particularly desirable when the observations are
coming in continually and the trajectory characteristics are such that point-by -
point processing of data is required, e.g., the LM powered flight processor. [12]

The Bayes filter requires inversion of matrices with order of the state vec-
tor; the Kalman, with order of the measurement vector. So the Kalman is very
useful in avoiding inversion of large order matrices. For example, in the Kalman
filter, LM, powered flight processor [12] the state vector has 21 elements; the
measurement vector, 4 elements.

See Battin [6] for a discussion of trajectory estimation using the Kalman
filter.
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22. CORRELATED DOPPLER MEASUREMENTS

Up till now the sequential filters have been derived assuming that the mea-
surement errors are uncorrelated in time. Depending on the particular problem,
it becomes considerably more difficult to develop sequential filters for time cor-
related measurements and this subject alone provides a sizeable area for study
[7]. We need not be concerned with this theory now, however, because all our
measurements are assumed to be uncorrelated except for the very simple case
of doppler (range-rate) observations discussed below.

From equation 14.44 the doppler frequency at time t is computed as

WiV
4
.= [ + -
22.1  fj= (w3 +b)+ o [(pl p,) - (o + pz)k]

where
t: .t
i+ Yk
22. 2 tJ = 2 (ti - tk > 0)
Define

22.3 K; actual measurement of cycle count at time, t;

22.4 O8K; zero-mean, random error in K;, 8K; and 8K uncorrelated (i # k)
Then

22.5 Kj - Kk

i

fi(ti - tk) + OKj -~ 6Kk

and

Ki—Kk__ 5Ki-5Kk

22.6 ti_tk—fj+ r—

The actual measurements here are K; and Kk, and the pseudomeasurement is

Ky . Ky
ti'tk
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From now on, for simplification, consider the pseudomeasurement to be
K; - K. This does not affect our discussion of correlated measurement errors.

Let k=i -1 in 22.5 and consider the following sequence of pseudomeasure-
ments at times, tp<tr<...<t,,

22.7 {Ki-Ki_l=fj(ti—ti_1)+6Ki-6Ki_1} (i, j=1, ..., n)

where
22.8  E(8Kj0K;j) = 3 % = j)
0 L #3j)
It follows that the covariance matrix associated with 22.7 is
’\ 8K, - 6K0
22.9 R =E. . [(6K1 - 8K) "+ (6Kp - 8Kp-1)]

(n % n) | 6K, - 8K )

(2 1. ¢
:0'2 -1. 20. ‘_1 (nxn)
KR T2

Since this (22.9) is not a diagonal matrix, the pseudomeasurements cannot
be processed sequentially by the methods of Section 13, We solve this problem
as follows.

Define

wgVv
22.10 AK; = (w3 + b)t; - tg) + = (pl + pZ)i
22.11 Ji-l = AKi-l + 6K‘i-l
Substituting 22. 10 into 22.7 gives

22.12 {Ki - Ki-l = AKi - AKi-l + 6Ki - 6Ki-l} i=1, ..., n)

o A e

' it

.. .
B g O T
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Substituting 22. 11 into 22. 12 gives the sequence of pseudomeasurements
modeled as

22.13 {Ki—Ki_1=AKi-Ji_l+5Ki} i=1, ..., n)

Adjoin J; | to the state vector as an element to be estimated with the pro-
cessing of K; - K;_; then the errors in this sequence (22.13) are uncorrelated,

and the covariance matrix is

R = 0%l {h x n)

[\
By combining 22.11 and 22.12 again the improved estimate, J;_;, is propa-

gated to become the a priori estimate, J;, as
~ A
22,17 Jl = (Kl - Kl-l) + J1_1
and from 22.11

22.18 JO = AKO

This way of processing the pseudomeasurements was presented to show how
it can be done, but it is really clumsy compared to the following equivalent
method which uses the actual measurements [12 ],

Combining 22.10 and 22.5 we can model the sequence of actual measure-
ments as

22.19 {K; = 0K; - MKy + Ky + 0K; - 8Ky} (k<i=1, ..., n)

If we choose k = 0, the covariance matrix associated with 22,19 is
2 S |

22.20 R =g¢
(n x n) . . . 1

(n xn)

T o 3
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If k=1 -1, then the covariance matrix associated with 22.19 is the same
as 22.9. Neither matrix, however, is diagcaal.

Define

22.21 Ik = AKk - I<k + éKk

Substituting this into 22.19, each measurement i¢ modeled as

22.22 K = 0K; - I + 0K (k<i=1, ..., n)

Adjoin I} to the state vector as an element to be estimated; then the errors

in measurements 22.22 are uncorrelated and the covariance matrix is R = o2I.
Substituting 22. 21 in to 22.22 with k =i gives

22.23 I = Ij
Therefore, we can write
Iy = To

which is a constant to be re-estimated at each sequential step. From 22.21
the a priori value for the first step is

and measurements are modeled as

22.25 K;j = AKj - Ig + 80K i=1, ..., n) (22.22)

Another way of arriving at 22.25 is as follows,
Replace the first member only of sequence 22.12 by 22.22, as
Kl = AK]. - IO + 6Kl

22,26 s KZ - Kl = AKZ - AKI + 5K2 - 6K1

( Ky - Kpo1 = 8Ky - MKy + 0K, - 0K, )

(TR G 1
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Consider I as a trajectory parameter to be estimated; then the covariance

matrix associated with 22,26 is

22.27 R = g2

X

This is just like 22. 9 except for the first diagonal element.

Define

22.28 661 = 6Ki - 6Ki_1

i=1,

The quadratic form associated with 22.28 is

1
22.29 29 =[68) "'+ 88n] =

1

-1

-1

.., n), (6Kg = 0)

63:

LE’Bn

- -t

(22.27)

which cannot be processed sequentially, since the matrix is not diagonal,

Consider the following:

22.30

-1

la

gl 1 -1
2
2 9
¢..
1
lo . l'—

y -1

et |

-
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Define
_5‘;';] ¢ IV’5ﬁ1
. ] .
22,31 = )

|_6Y

Then 22.29 can be written

22.32 2¢

1
Loyy ~ 6yn]0—2 1..

and the {6y;} can be processed sequentially by the methods of Se«tion 13,
But applying the transformation of 22. 51 to 22,26, we see that

yi=Ki:AKi-Io+5Ki

as in 22.25. We have arrived at this result in different ways to show the
possibility of using ingenuity to develop seqiential estirnators for correlatcd
measurement errors. See Blum [7] for a more comp'ete discussion.
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23. ALGEBRAIC PROOF CF SEQUENTIAL PROPERTIES

A method was presented in Section 20 for downweigi:ting data exponentially
as a function of time in the Bayes filter. An explanation of the method and an
algebraic proof that the sequential properties are retained were given in a pre-

vious paper [9]. This section is essentially a copy of the paper [9] with some
minor improvements.

Our purpose is to define and prove a procedure for downweighting past data
within the Bayes processor. We do this by first reviewing a derivation of the
Bayes equation without downweighting. Here we introduce some new definitions
to simplify writing the equation. Then we present an algebraic proof of mathe-
matical consistency. Finally we extend this proof to inclade the case where
data is downweighted by the prescribed formula. Following the proof is a
brief discussion of some practic:l aspects of implementation.

Definitions
23.1 S, True value of the state vector (vector of functionally
' independent trajectory parameters) at time ti
23,2 S. A priori estimate of Si
i
A
23.3 S

Improved estimate of Si

23,4 (g- S) Small deviation of a priori estimate of state vector

from the true value at time ti

A
23.5 (5-5), Small deviation of improved estimate of state vector
! from the true value at time ti

23.6 E Statistical expectation operator

23.7 ff‘li =B [(g -S5) ('§-S)T]i A priori state covariance matrix at time ti

N T

A A A
23.8 I‘iE E [(S-S) (S--S)T]i Improved estimate of state covariance matrix at
' time t;

23.9 «q, An observation vector at time 1:i

E P
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23.10 Bi =8 (5)) An observation vector whose elements are deter-

mined as functions of 5;. Assume dimension B; =
dimension S;. This causes no loss in generality,
because if dimension B; > dimension 5;, then 8;

can be partitioned into subvectors conforming to
the assumption.

23,11 (@ - [3)i An observation residual at time t

23,12 R,=E [(0-B)(a- _.“.‘)T]i Observation covariance matrix at time t,

BSk aStk
23.13 35 = 35 i.e., subscript k on a partial derivative implies
j tj subscript t)

BSj

23. . -8
14 %4 BBi (o ')1
T

0B; __1 9Bj

23.15 Wi = = R}’ o

23.16 MjE {aij}

23,17 29 Quadratic form
T
(3¢
23,18 &= (BS. )
i
23,19 ) A chosen scalar (320)
23,20 e Base of Napierian logarithms
23,21 T As a superscript, indicates the transpose of a

matrix or vector

Derivation

There is a 1-1 correspondence between the elements of My and Mj as

38
23.22 ay = —

27 b -

Chay L, Eay
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and also

asz 35,
23.23 Wik = e Wij —

ask BSk

Consider that we have a finite set of observations, Assuming a normal
distribution of estimate errors about the true values and using the method of
maximum liklihood, the quadratic form to be minimized with respect to Sj’

the vector to be estimated, is

T . -1 T
23.24 20 = 3 (@ -B); R, T (a-B) = b 25 W,
i i

Note that definition 23,10 implies that

I
35; 3B

If an estimate of the state vector exists, it is included in the set of observa-
tions. For example

(o - B)jT Rj‘1 (0-8); = (§—S)} L -1 (%‘-S)j , and we can keep the

equation in the simple form (23.24).

Neglecting terms higher than first order,

T T
> o8 -
23.25 & E(—cf) = 2, . R, 1(oa-B)i

= -3, Wijaij . (23.24)
i
28," 28
od i -1 71 .
. _— = . —_— = ., =1, ...,
23.26 35 ? ¥ N 8 ); Wi . ™)
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A
Assume that our best estimate of ¢, ¢ = §. Also assume the matrix (23.26)
A
is positive definite, assuring that the solution to & = @ wili minimize (23.24) and
3%
BSj
form and it is desirable to express the partial derivatives with respect to the

-1
A
also that < > exists. Since the solution to ¢ = ! minimizes the quadratic

A
true state, we expar}\d $ in a Taylor series about % rather than the usual ex-
pansion of % about §&.

A A
23.27 ¢ = &+ % (S -S)J. = p and the Bayes cstimation equation is
J

A 3% \ -1 . -1
23.28 (S—S)j = '(‘a’sj-) d = [Z Wi ] [2 leaij:l (23.27)

1 i

and assuming observation errors are serially uncorrelated

-1
A A A T
23.29 rj = E [(S-S)(S-S) ]j =[E Wi ] (23.8, 23.28)
1

Now we show that if we partition 2 finite set of ohservations into non-

empty subsets for sequential processing by 23.28, the final SA at tA is

independent of the partition, the sequcntial order, and times of processing.,
Consider an algebraic system (Mj’ *) where

23.30 M. = {a.. 23. 16
; {au} ( )

~ A
Also consider Sj and Sj as observations so that

23.31 {(S-s §-5). ] M

Let * be a binary operation such that

> e \
23,32 21 "‘azj = [i=1 Wij ] [i=1 Wij aij] = (S-S)j (23.28)
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Note that

2 -1

Z Wij] exists either as a true inverse or a pseudoinverse.
Li=1

See Deutsch [4].

Define this operation (23.32) to be the processing on Mj of the observa-
tions taken at-times t; and t;.

23,33 Clearly * is commutative.

Show that ** is associative, i.,e., that

X % = . sk . b3 .
(ay#ay) *agy = 2y (ayy * as))
A
" = (3 .9) % 23.32
23.34 (alj a2j) a3j (S S)j a3j ( )
23.35 [f 1w ] . [f L Ses), ¢+ oW ] (23.28)
. = I ) : - 5), .aa., .
i 3 j j 3;%3;
3 -1 3 A
i=1 i=1
A

A
Note that (S - S)j in 23,36 has the double carat superscript to distinguish
A
it from the (S - S)j of 23.34. Also,

% x = s % 23,33)
23,37 a, (aZj a3j) (azj asj) 2y (

Evaluating the right side of 23.37 is the same as evaluating 23. 34 after
permutation of the "i' subscripts, and the result is again 23.36.

bnow the isomorphism,

23.38 (M, *¥)= M, *)

The 1-1 correspondence, ajj <> 2 is clear from the mapping. (23.22)
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Also
08 38, A
23.39 BSJ alJ "‘a—'sg— azJ = alk w® a.2k = (S - b)k
(?) 5k 95y
= 35 (8-9) = 35, (@)% a,)

98,

2 -1 T T 2
3s 3s 3s 3S
kA K Kk ;
23.40 — (S - =—= |2 w. ] W..a..
A L5 o ]

2 12 A
23.41 =[Z wik] [2 W2 ] = (S-8),

i=1

It follows that if we partition a finite set of observations into non-empty
subsets for sequential processing:

a. Because of the isomorphism the image of the process is always on
My, and the final S, is the same as if all the processing were on My.

A
b. Since * is associative, S, is independent of the partition.

A
A
c. Since * is commutative, SA is independent of the sequential order.

Next we extend the proof to include the method for exponential downweighting
of data. (Section 20.) Re-define

T
. -t:) OBi _-1 9Bj
oMt - t5) oBi -109f;

and map
ﬁ Mej-ti) g 95§
23.43 Wy = 55, © ) Rij 35, (0 5)

T AR -
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Show that

23,44

23.46

(Mj , X)) = (Mk , %) still holds,
ask (é‘ "
98, J
J
T
S E Wij — e ]
BS 1"—‘1 as
2 -1 2
.Z? Wik .2: Wik 2k J =
i=1 i=1

A
(8-8)

The rest of the cefinitions, proof, and results still hold.

Implementation

Assume that we have a set of m observations taken at times {tl, ty, ..

H69-0009-R
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A

tm}. Also at ty we have a priori eitimatesﬁ §O and FO of the state vector and

its covariance. We wish to obtain Sm and I‘m I

observation,

ty,» the time of the last

we have shown, the time of prrcessing is arbitrary as long as the result is

A A

A

mapped to t We choose to estimate 5, and I‘O att, and map these to Sm

A
and I’ att
m

Rewrite the following equations:
m

\ -1
23,47 (5-9) = [? Wij] [217 Wij 24 ]

23.48 W..=e
1)

23.49

aij

Mo -t5) 381 -1 383

asj BSj

3S,

= -3 -B).
=35 (o B)1

1

(23.28)

(23. 42)

(23.14)

This is a natural situation as we picceed along a trajectory. As
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Substituting 23.48 and 23.49 into 23, 47,

. m a8 A(e-t) o oes ]
23,50 (S-5), =% e 0 R
; ——
-0 a8, 3S,
=09 ]
m 3BT At - t)
1 1 ] -1
e Ri (OL-B)i
i=0 38,
j
Letting tj=to and expressing the a priori values
\ ~. om a8 M-t a8 ]!
23.51 (8-8) =T + 3 e R, = ——
m 3B, At ~t))
- i 0 -1
P, B8+ — e ! R, (a-8),
0 i=1 aSO
From 23,51 and 23,29
;] m 3B, A(t -t.) 3, 1 -1
23.52 £ | T + § R .
- i v
iz=] BSO BSO

Equation23,51 is a Taylor series expansion valid in terms of any vector

A A
S, in the region of convergence about S To find S we set S, = S, , which

0 A 0 0 0 On
is the current best estimate of SO' and then iterate until convergence.

-1
T B
~-1 m 3B At -t ) i
- {0 -1
23.53 8y .1 = Son + Ty, + Z e 1 R.
1=1 as 1 as
On On
T
~ "l ~ m BB. Xt. "t )
r (5-5)y + 3 - e + 0 gt a-8)
0 nlo T gy — i (@-Fay

On
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If the convergence criteria are met after n iterations, then consider that
A
23.54 55 =8
n

A
Then S0 is the initial conditions for integrating the equations of motion from

A
tO tot  to obtain Srn' By inspect.un of 23.51, 23, %, and 23,54, after the n

iterations consider

m a8T AL, -t,) 38,
A ~-1 0 -
23.55 I = + N — e R, -

0 £ i
i=1 ason o5 On

A A
i N
Then I‘O is mapped to m 28

23.56 T
m

Inspection of the above shows that the well-known Bayes is the same as
before, the only alteration being the method of downweighting data.
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